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Introduction

Problem of traditional drug testing

Drug development remains a high-risk, high-cost endeavor, with attrition rates in
clinical trials persistently exceeding 85-90 % across therapeutic areas [7]. In
oncology, success rates can be as low as 3-5 %, reflecting poor translatability of

preclinical results to human outcomes [7]. Conventional animal models, though
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historically indispensable, frequently fail to replicate human physiology and disease
complexity, leading to inaccurate predictions of efficacy and safety [5]. These
translational gaps contribute to 12-15 years of development timelines and costs
averaging $2-2.5 billion per approved drug [7]. In addition, regulatory, ethical, and
reproducibility concerns are driving the search for alternative models that better

capture human biology without relying heavily on in vivo animal studies.

Potential of virtual organism models

Advances in induced pluripotent stem cells (iPSC) and organoid technologies are

redefining the preclinical landscape. Human iPSC-derived organoids can
self-organize into physiologically relevant 3D architectures that mimic native tissue
functions, enabling modeling of organ-level drug responses [6]. This capability
supports personalized medicine approaches where patient-specific cells are used to
predict individual drug responses. Parallel developments in Al-driven virtual
modeling, including multi-omics integration, spatial transcriptomics alignment [4], and
in silico patient simulations, are accelerating the design-build-test-learn (DBTL) cycle
for therapeutic discovery [2].

Importantly, regulatory shifts such as the FDA Modernization Act 2.0 recognize “new
approach methods” (NAMSs) as viable alternatives to animal testing, opening a
pathway for Al-enhanced virtual models to play a central role in preclinical

decision-making [7].

From Animal to Non-Animal: Redefining the Stem Cell Analogy



While iPSC and embryonic stem cell (ESC) systems have revolutionized modeling in
human and animal biology, analogous regenerative and self-organizing systems exist
in other kingdoms. This work proposes extending the virtual cell framework, which
was traditionally centered on animal stem cells, to include plant callus cells and

bacterial colonies as functionally analogous platforms.

Animal iPSC: capabilities and pipeline

iPSCs are pluripotent, capable of differentiating into virtually any somatic lineage. In
vitro, they can be directed toward specific tissues or combined into organoids that
replicate aspects of organ physiology [6]. These models support drug toxicity
screening, disease modeling, and personalized therapy prediction. Integration with
Al, spatial transcriptomics, and predictive modeling tools [4] enables simulation of

developmental trajectories and response profiling at single-cell resolution.

Why this analogy matters for digital modeling
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This cross-kingdom perspective is not merely theoretical. In human health,
Al-enhanced modeling of iPSC directly addresses the reproducibility crisis in
preclinical research and reduces reliance on animal testing. In infectious disease
management, Al-driven methods such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and gradient-boosted decision trees already
enable rapid pathogen detection, resistance prediction, and antibiotic treatment
optimization, cutting inappropriate prescriptions by up to 67 % in urinary tract

infection cases [1].
Plant callus cells as functional analogs

In agriculture and environmental biotechnology, plant virtual cells could transform

agrochemical safety testing. Currently, greenhouse and field trials are expensive and



slow, and many candidate compounds fail late in development, defined as a pattern
analogous to drug discovery bottlenecks [2]. Al-guided virtual plant models could
simulate hormone-driven developmental responses (e.g., auxin/cytokinin balance) to

predict pesticide efficacy and toxicity before costly real-world trials.

Plant callus cells are totipotent: any differentiated plant cell can revert to a
pluripotent-like state and regenerate an entire organism under the influence of
phytohormones such as auxin and cytokinin. This mirrors the role of morphogen
signaling (e.g., BMP4, Activin A) in iPSC reprogramming. As in animal systems,
callus formation follows distinct molecular pathways that can be predicted,
manipulated, and optimized, making them viable candidates for Al-driven virtual
plant cell modeling. In sum, such models could accelerate agrochemical testing by

forecasting toxicity and growth effects prior to greenhouse or field trials.

Bacterial cells as self-organizing, programmable systems

In microbiology, bacterial virtual colonies could function as predictive testbeds for
antibiotic resistance evolution and biofilm-associated treatment failure — problems
that conventional in vitro assays poorly capture. Although bacteria lack traditional
multicellular differentiation, they demonstrate remarkable programmability. Through
engineered gene circuits, phase variation, and biofilm formation, bacterial colonies
can display coordinated behaviors with emergent properties. Biofilms, in particular,
are clinically significant responsible for up to 65 % of human infections and
displaying antibiotic resistance 10-1000 times greater than planktonic cells [1].

Al-powered genomic and phenotypic prediction pipelines already achieve > 90 %



accuracy in resistance classification [2] and resistance for pathogens like
Staphylococcus aureus and Pseudomonas aeruginosa [2], highlighting the readiness

of bacterial systems for integration into a virtual colony modeling framework.

Therefore, by extending the virtual cell concept beyond animal paradigms, we can
address multiple high-stakes bottlenecks across health, agriculture, and

biotechnology.

Limitations of existing models and the novelty of this work

These challenges extend beyond human therapeutics. Agrochemical development
faces a severe efficiency problem: large numbers of pesticide candidates fail in
late-stage field testing due to unforeseen crop toxicity or insufficient pest control [2].
The lack of predictive, mechanistically accurate in silico plant models prolongs

time-to-market and increases development costs.

In microbiology, antimicrobial resistance (AMR) continues to outpace the
development of new antibiotics. Globally, AMR was directly responsible for

1.27 million deaths and associated with 4.95 million deaths in 2019, and is projected
to cause up to 10 million annual deaths by 2050 without intervention [1]. In addition,
up to 65 % of all human infections involve biofilms, which drastically reduce antibiotic

efficacy [1].

Al models have demonstrated tangible clinical utility, for example, real-time

prescription optimization in sepsis that aligns with clinical practice, and



genomic-driven resistance prediction with > 90 % accuracy [2]. However, these tools

remain siloed from plant and bacterial virtual modeling pipelines.

Our proposed framework unifies these disparate efforts into a cross-kingdom
Al-based virtual cell architecture, enabling reproducible, scalable, and
mechanistically grounded predictive modeling across biomedical, agrochemical, and

environmental domains.

Background

Today, biological modeling has increasingly relied on artificial intelligence tools that
can analyze complicated data and predict cellular behavior[8]. However, well before
Al, scientists used rule-based simulators grounded in mechanistic principles, wherein
a user would define particular biological rules, such as chemical reactions, diffusion,
or physical constraints, and the system would simulate the resulting dynamics[9].The
use of these transparent and interpretable tools facilitates hypothesis testing,
generates detailed, quantitative predictions, and allows exploration of all "what-if"
scenarios[10]. On the other hand, their obvious disadvantage is that the approach
requires clearly designed input parameters and a very good understanding of the
biology of the system under consideration[9]. They may also have difficulty scaling in
large, data-rich environments that Al-based models excel in, learning patterns
directly from the data[11]. To illustrate the strength and weaknesses of this

methodology, the paper will focus on three commonly used platforms: Virtual Cell



(VCell), PhysiCell, and CompuCell3D. They embody an almost complete spectrum of

ways to model cells and tissues-from molecular-level[12].

The Virtual Cell (VCell) platform serves perfectly in simulating the impact of spatial
organization on intracellular processes[14]. Users can specify reaction networks
within biological compartments, say the cytoplasm, nucleus, or extracellular
space[14]. These configurations are then automatically translated by the system into
mathematical models using ordinary or partial differential equations (ODEs/PDESs).
With options for deterministic and stochastic solvers, and several inbuilt geometries
of cells for 2D/3D modeling (one can import cell geometries from microscopy), VCell
facilitates spatially-resolved simulations aligned with imaging data and structurally
analyzable with regard to spatial effects on signal transduction and regulatory
dynamics solvers[14]. One of the unique capabilities of VCell is integrated rule-based
modeling, where the user is allowed to specify reaction rules (using BioNetGen
language-BNGL) without needing to list every reaction, thus enabling network-free
simulation of combinatorially large systems. VCell, in fact, incorporates the NFSim
network-free simulator to accommodate large rule-based models with a high number
of potential species configurations[15].To summarize, VCell is designed to span
multiple modeling formalisms: deterministic, stochastic, spatial, non-spatial, and
rule-based, all accessible in a single platform[12].

Inside, VCell uses a tiered approach: a BioModel defines the species,
compartments, reactions (or rules), while specific Applications inside the BioModel
define the simulation type (ODE, PDE, deterministic, or stochastic), geometry, and

solver settings[14]. From the biological model definition, VCell automatically



generates the necessary math equations (such as systems of ODEs or PDEs),
freeing users from the task of manual derivation of equations. It shares with the user
a graphical user interface and database-backed environment in which one builds
models by drawing compartments and reactions; the math that bog-they-minds may

be inspected and even directly edited[14].

An open-source, physics-based framework for simulating multicellular systems in
both 2-D and 3-D environments is PhysiCell[17]. It is designed to scale
computationally and efficiently; thus, simulations of 10*-10° interacting cells and
dozens of diffusing biochemical substrates can run smoothly on a desktop,
high-performance cluster, or cloud infrastructure (PhysiCell, n.d.). PhysiCell
synergizes tightly with BioFVM: a parallelized solver for swiftly computing the
diffusion, decay, and uptake of multiple substrates (such as oxygen, glucose, drugs,
signaling molecules) that take place discreetly in 3D space-however, the direct
coupling of extracellular gradients with cellular responses also happens-migration,
growth arrest, or apoptosis[19]. Whereas lattice models force cells into fixed
positions on the lattice, PhysiCell operates off-lattice, with cells assigned continuous
spatial coordinates as autonomous agents. These positions and mechanical
interactions vary dynamically through physical laws, rendering discretization artifacts
largely moot. PhysiCell includes some prebuilt agents for major cellular mechanics

and behavior submodels that are biologically realistic[17].

Each cell is internally represented by a hierarchical Phenotype data structure, which
stores variables like cell cycle phase, death state, volume, motility parameters, and

secretion rates. Instead of manually coding these behaviors, users define



environmental dependencies (e.g., "low oxygen increases necrosis") that
dynamically update phenotype variables during simulation[20].This allows users to
focus on modeling how microenvironmental conditions influence standard cellular
behaviors, rather than re-implementing those behaviors themselves[20].PhysiCell
also supports a human-readable, rule-based modeling language, which allows users
to specify such logical or quantitative rules as “TGF- reduces motility” or “oxygen
below 5 mmHg increases apoptosis” that are automatically compiled into executable
code at runtime [17].This promotes reproducibility and interpretability by reducing the

need for low-level programming and enabling annotated model components.

The framework is implemented in standard C++ with minimal external dependencies,
making it portable across platforms and easy to maintain [20]. It supports
multithreaded execution via OpenMP, allowing simulations to scale linearly with the
number of cells. PhysiCell's modular design enables seamless integration with other
modeling tools: for example, Boolean regulatory networks via PhysiBoSS,
extracellular matrix modeling via PhysiMeSS, and intracellular signaling pathways
using ODE solvers like libRoadRunner. These features make it suitable for

multi-scale, multi-physics modeling across diverse biological systems[20].

PhysiCell is developed by a collaborative community of researchers, with continuous
improvements enhancing its biological realism, computational efficiency, and
interoperability with emerging modeling standardshttps[17]. While the platform was
initially designed for cancer modeling, its architecture is general-purpose and has

since been adapted to simulate a wide variety of biological processes[17]. Its



diffusion solvers and phenotype modules are broadly applicable, enabling its use in
fields such as tissue engineering, angiogenesis, microbial ecology, and immune

system dynamics.

Thanks to its modular architecture and core functionality, PhysiCell allows users to
develop custom libraries for simulating physiological systems similar to how
Microvessel Chaste was built upon the Chaste simulator, which is also based on
biophysical principles [12]. Furthermore, users can define new types of substrates
(e.g., extracellular matrix with zero diffusion), add custom cell types (e.g., fibroblasts
with high motility and matrix-modifying behavior), and construct entire cellular
systems, such as vascular networks that secrete oxygen and respond to gradients of

angiogenic growth factors [21].

CompuCell3D is an intuitive and flexible modeling environment designed for building
in silico virtual tissue simulations without requiring extensive programming expertise.
Its scriptable architecture allows for rapid development and sharing of models across
a wide range of multiscale, multicellular biological problems [22]. Written in C++ and

equipped with Python bindings for model and simulation development, CompuCell3D
uses the Cellular Potts Model (CPM) to simulate cell behavior, including shape

changes, adhesion, and movement within tissues[23].

Application areas of CompuCell3D include angiogenesis, bacterial colony growth,
cancer, developmental biology, tissue engineering, immune responses, evolutionary

mechanisms, toxicology, and even modeling of non-cellular soft materials[22]. These



domains significantly overlap with those of PhysiCell, particularly in modeling
cell—cell interactions and tissue behavior under dynamic microenvironmental

conditions[12].

CompuCell3D models are configured through XML files (CC3DML), where CPM and
PDE settings are defined, and Python scripts known as stepables execute custom
logic during simulations. Low-level calculations are optimized in C++ for speed, while
high-level behaviors are accessible through a rich Python API[23]. Plugins further
expand functionality, enabling processes such as chemotaxis, external force

application, cell elongation, and adhesion manipulation[22].

scVI

Single-cell Variational Inference, or scVI, is a deep generative model that uses a
variational autoencoder (VAE) on single-cell RNA-seq count data [28]. It is trained
using a probabilistic model (usually a negative-binomial likelihood) and a
KL-divergence term in the VAE loss on the raw gene expression count matrix (raw
UMI counts, not log-transformed). In actual use, scVI is frequently configured by first
registering the raw counts in an AnnData object (scvi-tools), after which a
low-dimensional latent embedding is learned that allows for the modeling and
"denoising" of technical variation (batch, library size). Differential expression,
clustering, and dimensionality reduction can all be done with the learned latent
space. When it came to integrating intricate datasets and eliminating batch effects
while maintaining biological variability, scVI excelled in benchmark studies. For

instance, Lopez et al. (2018) demonstrated that scVI performed well on tasks such



as DE analysis, batch correction, visualization, and clustering[28]. Due to its
generative nature, scVI can also be used to sample from the latent space in order to
create new "virtual" cells (for example, generating gene-expression profiles for
fictitious cell states) or interpolate between conditions, both of which are useful for
exploratory analysis [31]. To summarize, scVI employs raw count data to train a VAE
with a reconstruction loss (negative-binomial or ZINB) plus KL divergence. This
results in a probabilistic latent embedding that corrects batch effects and lowers
dimensionality.
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Figure 1. An outline of the general design of two different representation models for scVI
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In terms of data, batch labels and the unnormalized count matrix or raw UMI counts
are used to train scVIl. The model employs an evidence lower bound (ELBO)
objective (reconstruction error + KL divergence) and assumes a discrete count

distribution (Poisson or negative-binomial). Frequently, the model handles



library-size normalization without the need for a previous log-transformation. After
training, scVI yields a latent embedding that can be used for clustering, differential
expression testing, and visualization (such as UMAP). According to studies, it
successfully eliminates technical batch effects. By decoding to expression space and

sampling from the learned latent prior, it can also produce new cells. These "in silico

cells can be used to enhance datasets or investigate unobserved cell states.
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Figure 2. The diagram illustrates how the model produces normalized representations and
how batch annotations are incorporated during training (The scvi-tools development team,

2025 [33]).

scGen

Single-cell perturbation prediction, or scGen, is a VAE-based model created
especially to forecast how single-cell gene expression will alter in response to
perturbations (such as medication therapy or genetic knockouts) [29]. By learning

distinct latent representations for every condition and cell type during training, it



integrates a standard VAE with latent vector arithmetic, ensuring that the effect of a
perturbation is represented by a constant vector shift in latent space [29]. In reality,
scGen learns to encode each cell into a latent space conditioned on treatment by
using as inputs the raw gene expression counts along with condition labels (such as
control vs. treated). By appending the acquired "perturbation vector" to the latent
representation of a control cell and then decoding back to expression space, scGen
can forecast an invisible condition after training. Accordingly, scGen can replicate the
effects of treatment on different cell types and even species. Lotfollahi et al. (2019)
showed that scGen captures biological response signatures by accurately modeling
drug or infection responses across cell types and studies[29]. The ability of scGen to
forecast how a novel drug or stimulus would change the transcriptome of cells not
visible in the training data is a crucial downstream application in silico drug testing.
When annotated data were available, scGen (with cell-type labels provided)
performed better than many other models in benchmarks for predicting perturbations

[31].

scGen is usually trained using paired conditions on the same raw scRNA-seq counts
as scVI. Each cell's stimulus or condition is listed on the training label. It employs a
conditional VAE approach, which is essentially a CVAE, along with KL divergence
and reconstruction loss, which is typically negative-binomial or MSE on
log-expression. In essence, scGen learns an embedded condition vector: the model
adds or subtracts perturbation effects using vector arithmetic after embedding cells
and covariates (conditions) into the latent space. scGen can transfer a perturbation

from one cell type or study to another after training. For instance, by extrapolating



from data on another cell type, it can mimic the appearance of an iPSC-derived
neuron under a specific medication. It is helpful in silico combinatorial effect and
dose-response prediction. The performance of scGen is on par with or better than
other integration techniques when cell-type labels are known, according to
nature.com. Generative investigation of perturbation effects is made possible by
scGen's generation of "predicted" single-cell profiles under novel circumstances

through the decoding of latent vectors.

DeepCell

Van Valen Lab's DeepCell framework is a collection of deep learning tools that were
first created for single-cell analysis using images. Using convolutional neural
networks trained on high-dimensional microscopy data (multi-channel images,
time-series) to carry out tasks like cell segmentation, classification, tracking, and
phenotyping is the main concept. Van Valen et al. (2016) demonstrated, for instance,
that supervised CNNs are capable of accurately segmenting the cytoplasm and cell
nuclei of both mammalian and bacterial cells, even differentiating between distinct
cell types within the same image[34]. DeepCell models heavily rely on data
augmentation and are trained on labeled image patches (such as microscopy
images with annotated cell masks). Rotating and flipping images greatly enhanced
segmentation in Van Valen's study (augmented training sets of 200-400k patches
from a few hundred cells). The network learns to produce instance segmentations or
cell masks, and the loss is usually a pixel-wise segmentation loss, cross-entropy or

Dice. DeepCell has recently branched out into multi-task networks such as



combining segmentation and classification and cloud-scalable tools including

DeepCell Kiosk. For example, in highly multiplexed images, the CelloType model

[32] jointly segments cells and classifies cell types using a transformer-based CNN.

In general, DeepCell's ecosystem comprises models for:

- Delineating cell and nuclear boundaries in 2D/3D microscopy with

performance at or above human level is known as segmentation [26].

- Cell tracking is the process of connecting cells over time to create lineages.

- Determining cell types or states based on image features (e.g. via clustering

or CNN classifiers) known as phenotyping.
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Despite its imaging focus, DeepCell is multimodal in nature; the lab also investigates
the relationship between morphology and molecular states. For instance, the goal of
DeepCell's GenAl platform is to combine gene expression and cell morphology, or
"multiomics"[27]. Therefore, DeepCell offers a "digital cell" framework in which
transcriptomic readouts are linked to image data (perhaps from live, label-free
imaging). Applications of DeepCell models include automatically profiling cells in
tissues such as distinguishing immune cells from tumor cells in cancer images and
to use cloud deployment to speed up extensive image analysis. Raw pixel data from
multi-channel microscopy is used in DeepCell networks. Fluorescence or
phase-contrast images with manually annotated segmentation masks (nucleus,
cytoplasm, whole cell) are common training data sources. To increase robustness,
training uses data augmentation (rotations by 90° increments and reflections). In
order to predict segmentation maps, models frequently employ CNN architectures
such as U-Net or others with multi-resolution features that have been trained using
supervised loss (cross-entropy or Dice). Dropout can be applied to fully connected
layers, but given the paucity of manually annotated data, heavy augmentation is

crucial.

Different data formats are used by these Al models. Single-cell RNA count matrices
are consumed by scVI and scGen. Importantly, they anticipate receiving input from
discourse.scverse.org in the form of raw UMI counts, not log- or
library-size-normalized counts. Both are VAE-based; they use the standard ELBO
loss function, which combines a KL-divergence and a reconstruction term. For

counts, the reconstruction term usually takes a negative-binomial (or zero-inflated



Poisson) distribution. Any normalization is learned internally during training, negating

the need for external feature scaling. Expression counts are generally not subjected

to data augmentation in the conventional sense (such as permuting or adding noise),

though certain VAE variants may employ subsampling or dropout masking.
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DeepCell models, on the other hand, are trained using image data. Multi-channel

microscopy images (e.g., one channel of nuclear stain and one channel of phase



contrast) or even dozens of fluorescence channels in multiplexed assays are
examples of input [30,31]. Pixel-level segmentations or object masks serve as
ground truth labels. Extensive image augmentation is used during training. Van Valen
et al. (2016) demonstrated that flipping and randomly rotating patches by 0°, 90°,
180°, and 270° greatly enhances segmentation performance[34]. Usually, the output
mask suffers a supervised segmentation loss (such as the Dice coefficient or
cross-entropy). Dropout is used to regularize sparingly, usually only in

fully-connected layers.

DeepCell networks classify and segment images with human-level accuracy by
identifying cells and subcellular structures [34]. For instance, DeepCell can identify
each cell in multiplexed imaging or spatial transcriptomics and then pair it with
marker expression to assign a cell-type label. Cell morphology, local cell density, and
spatial context can all be precisely quantified thanks to the segmentation output.
Cells by phenotype can also be directly classified from images using different
DeepCell models (or branches of a network). Other analyses may use these image
features as inputs (e.g., predicting gene expression from image or vice versa). As
generative VAEs, scVI and scGen are able to create new data. By decoding and
sampling latent vectors, scVI can produce "virtual" cells. When given unperturbed
inputs, scGen specifically produces perturbed cells. The goal of DeepCell's most
recent GenAl models is to create artificial cell images in novel settings (such as how
a cell would appear following medication treatment). This suggests that multi-modal
digital cells will be possible in the future when models are able to integrate

modalities, predicting an image from expression or vice versa.



In conclusion, deep learning is used by contemporary Al-based models such as
scVI, scGen, and DeepCell to learn data-driven cell models without the need for
hardwired biology. They optimize variational or deep convolutional networks (with
losses like KL divergence or cross-entropy) using raw high-dimensional inputs (RNA
counts or images). These techniques have empirically demonstrated excellent
performance in actual single-cell studies. For instance, DeepCell models have been
utilized for high-throughput tissue imaging, and scVI/scGen has been applied to
human iPSC differentiation data and other scRNA-seq tasks. Their accuracy and
usefulness are validated by benchmarking across studies. These tools are essential
parts of the contemporary single-cell toolkit because they work together to enable
strong downstream analyses, such as creating new cellular profiles, integrating

datasets, and categorizing cell phenotypes.

For our research, scVI should be used for batch-corrected latent embedding and
dataset integration in our study on virtual organism construction using iPSC data;
scGen is best suited for simulating transcriptomic responses to perturbations, such
as virtual drug testing; and DeepCell can be integrated during tissue-level modeling
and spatial reconstruction. These tools work together to create a complementary Al
toolkit that includes spatial morphology, perturbation response, and gene expression
dynamics. This toolkit is essential for simulating the transformation of a single cell

into a functional virtual tissue or organ.



Main body

Digital Representation of the Cell: From Expression to Model in

Animal cell

The transformation of a biological cell into a computational model, here referred to as
a virtual cell, represents a cornerstone in systems biology, computational modeling,
and Al-driven drug discovery. A virtual cell is more than a static abstraction of cellular
traits; it is a dynamic, data-driven construct capable of simulating gene expression
changes, regulatory shifts, and phenotypic responses in reaction to stimuli such as
transcription factors, small molecules, or environmental stressors. This subsection
details the theoretical and technical underpinnings of digital cell modeling, tracing the

evolution from raw single-cell omics to trainable generative models.

Biological Data Foundations: From scRNA-seq to GRNs and Perturbations
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The foundation of any digital cell model begins with single-cell RNA sequencing
(scRNA-seq), a technology that has revolutionized our understanding of cell
heterogeneity, differentiation landscapes, and context-specific gene expression [35].
Through scRNA-seq, it is possible to decompose tissue samples into individual
transcriptomes, offering a high-dimensional representation of gene activity at the
single-cell level. Recent projects such as the Tabula Muris Senis and Human Cell
Atlas have provided expansive scRNA-seq datasets, which now serve as key

training corpora for generative Al [36,37].

Beyond expression, gene regulatory networks (GRNSs) offer a structured view of how
cellular transcriptional output is orchestrated. These networks model the directed
interactions between transcription factors (TFs) and their target genes, often

reconstructed using statistical inference, Bayesian methods, or perturbation-based



learning algorithms [38]. Importantly, GRNs provide interpretability, ensuring that

models do not merely correlate but embed causality in gene activity [39].

Another key layer includes drug perturbation signatures, as popularized by the
LINCS L1000 database and the Connectivity Map, which systematically profile
transcriptomic responses to thousands of chemical and genetic perturbations [40].
These datasets provide functional input—output mappings critical for simulating

virtual interventions.

From Data to Representation: Vectorization and Latent Spaces

Once biological data are collected, the next challenge lies in embedding them into a
mathematical space suitable for simulation. In the simplest form, a cell can be
represented as a vector of gene expression values or activity levels of GRN nodes.
However, such high-dimensional representations are often noisy and redundant. As
such, dimensionality reduction is crucial, not only to reduce computational complexity

but to extract biologically meaningful features.

Variational autoencoders (VAEs) and their probabilistic derivatives (e.g., scVI) have
become the gold standard for this task [28]. These models compress
high-dimensional expression profiles into a latent space, which is a continuous,
low-dimensional embedding that captures the essence of cellular identity. This space
is not only useful for clustering or visualization but forms the backbone for simulation,
enabling interpolation between cellular states or projection into hypothetical

conditions [41, 42]



In this framework, each cell is an embedding in latent space, where neighboring
points reflect biological similarity, and directions correspond to biological processes,
such as cell cycle, activation, or differentiation. The latent variables can thus be

interpreted as axes of variation shaped by biological programs.

Modeling Transitions: Dynamic Behavior and Perturbation

Response

A true virtual cell must not only represent a static identity but simulate how that
identity evolves in response to changes. This capability emerges in dynamic
generative models, such as the Compositional Perturbation Autoencoder (CPA) and
scGen, which allow conditional simulation of transcriptomic outcomes [29,30]. CPA
extends the VAE framework by conditioning both encoder and decoder on covariates
such as perturbation type, dose, or time point, thus enabling extrapolative

generalization across unseen conditions.

For example, given a latent embedding of a CD34+ hematopoietic stem cell, CPA
can predict its transcriptional state after exposure to interferon-gamma, even if that
specific combination was never observed in training. Such capabilities are
particularly valuable in virtual drug testing, where one wishes to simulate the effect of

a compound on diverse cell types without empirical experimentation.

Such trajectory inference models as Monocle, PAGA, or RNA velocity further
augment simulation by reconstructing pseudo-temporal orderings of cells based on

scRNA-seq snapshots [43, 44]. These models offer vector fields over latent space,



suggesting how cells move from progenitor to terminal states. When embedded into
virtual cells, these dynamics enable the simulation of developmental trajectories,

disease progression, or reprogramming under transcription factor induction.

Integrating Structure and Interpretability
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To ensure interpretability and biological realism, newer models integrate mechanistic
priors, notably, GRNs or biochemical kinetics, into deep learning frameworks. For
instance, DeepGRN and GeneCircuit models encode prior knowledge into neural
network architectures, ensuring that learned embeddings reflect known TF-gene
relationships [45,46]. This approach addresses one of the core challenges of

black-box deep learning: biological plausibility.

Additionally, physics-informed machine learning and differentiable simulators such as
Differentiable Cell (DiffC) attempt to integrate spatial constraints, diffusion, or
feedback loops into cell-level simulations [47]. These hybrid approaches offer the

benefits of both worlds: data-driven accuracy and mechanistic transparency.



Virtual Animal Cell

Input Data

Simulating organoid growth in a three-dimensional environment involves capturing
both intracellular dynamics and cell-microenvironment interactions. To accurately
reproduce morphogenesis, differentiation, and cellular self-organization, hybrid
approaches leverage biophysical models guided by Al methods. These models rely
on several key data sources: multi-cell single-cell RNA sequencing (scRNA-seq) for
defining cell types and transcriptional states; precise spatial growth conditions (e.g.
Matrigel stiffness, extracellular matrix composition, biochemical gradients); and
imaging data (high-resolution 3D/4D microscopy of organoids) to calibrate and
validate morphology, cell arrangement, and dynamic behaviors [48]. Of these input
modalities, as discussed earlier, sScCRNA-seq serves as a key element throughout the
virtual modeling pipeline — from lineage validation to Al-driven cell behavior
modeling. To clarify, single-cell transcriptomics provides a comprehensive map of the
cell states and differentiation trajectories within the organoid, ensuring that each
simulated cell type behaves in accordance with its real-world counterpart. In practice,
scRNA-seq data can guide the assignment of cell phenotypes in agent-based
models or serve as training data for Al algorithms that predict cell fate decisions.
Moreover, realistic spatial context is crucial; factors such as matrix stiffness and
nutrient gradients influence how organoids develop structures like lumens or
vascular networks, so these conditions must be encoded in the simulation.

Concurrently, time-lapse imaging data offers ground-truth for growth patterns and



organoid morphology changes over time, helping to tune model parameters (e.g. cell

proliferation rates, movement) so that in silico organoids mirror in vitro observations.

Al and Hybrid Modeling Approaches

A hybrid modeling approach combines data-driven Al techniques with mechanistic,
physics-based simulations to capture the complexity of 3D organoid development
[49]. On the Al side, generative models like 3D Generative Adversarial Networks
(GANSs) and Variational Autoencoders (VAEs) have been proposed to synthesize
realistic 3D forms. For example, a 3D-GAN can be trained on volumetric organoid
imaging data to generate new plausible organoid morphologies under different
conditions, allowing exploration of how changes in growth factors might alter
organoid shape. The application of GANs/VAEs to de novo 3D morphogenesis is still
nascent — Al-driven generation of complex organoid structures remains an emerging
research area with limited training data, so currently Al is rarely used directly to
create novel 3D morphogenetic predictions [50]. Nevertheless, such generative
models hint at the potential for Al to suggest novel organoid architectures beyond
what has been experimentally observed.

Meanwhile, deep learning is making an impact in organoid image analysis and
morphology quantification. Tools like OrganolD [51] provide a versatile deep learning
platform that can automatically recognize and track individual organoids in
microscopy images, measuring features such as organoid count, size, and shape
over time. OrganolD demonstrated >95% agreement with manual counts of

pancreatic cancer organoids and ~97% for organoid size, without parameter



adjustments, and it maintained single-organoid tracking accuracy above 89% over
four days. Such Al-driven image analysis platforms accelerate high-throughput
phenotypic measurements: for instance, OrganolD can trace exact organoid shapes
and monitor changes (e.g. in circularity, solidity, eccentricity) under different drug
treatments automatically [51].This enables direct validation of simulation outputs —
one can compare simulated organoid sizes or shapes with real image-derived
metrics.

Another example, sometimes termed "OrgaNet," refers to deep neural networks
designed for organoid morphological analysis, including segmentation of organoid
structures and even cell nuclei within them. These networks (often based on 3D
U-Net or similar architectures) can convert raw imaging data into quantitative
morphological descriptors that feed into or benchmark the simulations [52].

On the mechanistic side, agent-based modeling frameworks simulate each cell as an
independent “agent” following biological rules. Platforms such as PhysiCell and
CellModeller allow researchers to embed cells in a 3D space where they grow,
divide, move, and interact according to biophysical laws. For example, PhysiCell [53]
is an open-source simulator that can model thousands of interacting cells, linking cell
behaviors (division, death, secretion, etc.) to diffusible signals and mechanics in the
microenvironment [53]. On the mechanistic side, agent-based modeling frameworks
simulate each cell as an independent “agent” following biological rules. Platforms
such as PhysiCell and CellModeller allow researchers to embed cells in a 3D
environment where they grow, divide, move, and interact according to biophysical

laws. For example, PhysiCell [53] is an open-source simulator that can model



thousands or even millions of interacting cells, linking cell behaviors (division, death,
secretion, etc.) to diffusible signals and mechanics in the microenvironment.
Ghaffarizadeh et al. [53] describe PhysiCell as a 3-D agent-based framework with
built-in submodels for cell cycle, apoptosis, mechanics, and coupling to diffusion
solvers for nutrients and signals. Using such a framework, one can simulate an
organoid starting from a few stem cells that proliferate and self-organize: cells
experience forces like cell-cell adhesion and pressure from confined growth,
consume nutrients, and respond to signaling gradients — leading to emergent
structures reminiscent of real organoids. For instance, agent-based models naturally
capture phenomena like hollow lumen formation at the core (via cell polarization and
apoptosis of interior cells) and spatial metabolic gradients (e.g. hypoxic center vs.
oxygenated periphery in larger organoids) when appropriate rules are included.
Experimental observations show that cells losing contact with a matrix or nutrient
supply often undergo apoptosis and accumulate in the organoid lumen [54], and
diffusion limits cause intrinsic hypoxic cores in organoids lacking vasculature [55]. By
calibrating the model with experimental data (e.g. nutrient diffusion lengths or
cell-death rates), these behaviors — luminal clearing and spatial differentiation —
emerge in simulations, matching real organoid morphology.

Crucially, hybrid models can integrate Al with these mechanistic simulations, using
machine learning to discover or optimize certain rules. For example, an evolutionary
algorithm or other optimization method might tune dozens of model parameters so
that the simulation outcomes (organoid size distribution, cell type proportions, etc.)
match experimental observations. In practice, researchers have begun to combine

data-driven components with physics-based models: Camacho-Gomez et al.[49]



present a framework where a neural network is trained on image-derived metrics to
regulate cell “decision-making” within an agent-based organoid model [49]. In their
approach, the simulation calls a deep learning model to decide which cell behavior
(divide, differentiate, etc.) should occur, and a genetic algorithm optimizes the neural
network so that the simulated pattern fits the observed morphogenesis [49]. This
kind of Al-in-the-loop strategy shows how machine learning can augment traditional
simulations — for instance, by predicting cell fate outcomes from gene expression or
microenvironment data, and feeding those predictions into the next time-step of the
simulation. Similarly, metaheuristic algorithms have been used to automatically tune
agent-based model parameters for better agreement with data [56], illustrating the
power of Al to handle complex parameter spaces that are intractable by manual
adjustment. Notably, graph-based Al approaches have potential to further enrich
these simulations. Graph Neural Networks (GNNs) can represent each cell as a
node in a graph, with edges embodying cell—cell interactions (such as physical
contacts or signaling proximity). Recent studies demonstrate that GNN models can
learn the rules of cell fate coordination from live tissue imaging data [57].

For example, Yamamoto et al. [57] showed that an interpretable GNN, given
spatiotemporal cell-tracking data from a live epithelium, could predict a cell’s fate
(e.g. division or differentiation) based on its neighbors and reveal distinct “neighbor
interaction” rules governing multicellular dynamics.

In an organoid context, one could likewise use a GNN to model how signals from
neighboring cells influence a cell’s behavior. During a simulation, the GNN would
dynamically update each cell’s state by passing “messages” along the cell interaction

network (mimicking juxtacrine signaling, contact inhibition, etc.), providing an efficient



approximation of complex cell-cell communication. This approach is especially
attractive for capturing emergent patterning — for example, how a small cluster of
organizer cells can influence the spatial arrangement or differentiation of surrounding
cells. While the incorporation of GNNs into organoid simulations is still largely
theoretical, the concept is supported by the versatility of the GNN framework: it can
infer general cell interaction rules from data without prior knowledge of the
underlying signaling pathways [57]. By ensuring that local neighbor effects are
learned from real data, GNN-augmented simulations could achieve more realistic

collective behavior than using physics-based rules alone.

Limitations and Outlook

It is important to acknowledge the current limitations in 3D organoid modeling with
Al. First, the use of Al for generating de novo 3D morphogenesis is still in its infancy.
Most Al applications in biology have focused on 2D images or sequence data;
applying Al to drive 3D shape formation (as in growing an organoid purely in silico)
faces challenges due to the complexity of spatial data and the lack of large training
datasets [58]. In other words, Al is rarely used directly to create novel 3D
morphogenetic predictions today — this is a frontier that demands new approaches
and substantially more data.

Second, there is a paucity of high-resolution 3D data at single-cell resolution to
inform and validate these models. Many studies still rely on endpoint measurements
of organoid size or gene expression, or on 2D cross-sections, which fail to capture

the full 3D cellular architecture [59]. The scarcity of volumetric, single-cell-resolved



datasets means that models might oversimplify cell-cell interactions or miss subtle
phenotypic heterogeneity. Advances in light-sheet microscopy and cleared-tissue
imaging are starting to fill this gap, but data volume and analysis remain bottlenecks.
Third, validation of simulation results is difficult without robust biomarkers and
standardized metrics. For example, if a model predicts a certain spatial pattern of
differentiation inside an organoid, do we have validated biomarkers or tracers to
detect that pattern in real experiments? The field currently lacks universally accepted
quantitative benchmarks for organoid morphology beyond generic ones (size,
circularity, histology). Developing validation biomarkers and assays (such as specific
immunostains for predicted cell states or functional readouts like calcium oscillation
patterns for cardiomyocytes) is crucial to test model predictions. Without such
benchmarks, it's hard to say whether a given simulation is “correct” or biologically
relevant. In summary, 3D organoid modeling requires a hybrid approach that
combines the strengths of Al and traditional physics-based methods. Neither
approach alone is sufficient: purely data-driven Al might not capture physical
constraints (like diffusion limits or mechanics), whereas purely mechanistic models
may not fully leverage complex datasets or uncover hidden patterns. A synergy of
the two can compensate for each other’s weaknesses — for instance, Al can rapidly
optimize parameters or suggest network interactions, while mechanistic models
ensure adherence to biophysical laws. The consensus emerging in this
interdisciplinary field is that we need to integrate Al with physical and mechanical
modeling to realistically simulate organoids. This could mean Al-derived rules
plugged into agent-based simulations, or simulators generating synthetic data for

training Al models — likely both in iterative cycles. Finally, it's worth noting that the



concepts in 3D organoid modeling are influencing other domains of biology as well.
Plant biology is seeing efforts to model 3D development of structures like root
systems and shoot apical meristems. Here, researchers combine biomechanics (cell
wall expansion, turgor pressure) with gene-regulatory network models to simulate
patterning in a growing root or the phyllotaxis in a shoot. While these plant models
don’t yet heavily use Al, the frameworks being developed for organoids could
conceivably be applied (for example, using machine learning to optimize a plant root
growth model against observed root architectures). Likewise, in microbiology,
agent-based modeling has been used for years to simulate bacterial colony growth —
for instance, BacSim [60] was an early individual-based model capturing how E. coli
cells grow and compete in a colony. Going forward, modern Al techniques like GNNs
could enhance bacterial colony simulations by learning interaction rules between
bacteria or predicting colony morphologies under various conditions (nutrient levels,
agar stiffness, etc.). These examples in plants and microbes echo the theme that
understanding complex 3D biological phenomena benefits from hybrid modeling. In
all cases — whether organoids, plant meristems, or bacterial biofilms — the integration
of Al with biophysical simulations offers a promising route to unravel emergent

behaviors in three dimensions.

Organ Integration

Functional architecture is a way of organizing and modeling organs and tissues. It

describes a set of system functions, their interactions and interrelations, and how



they are implemented in the system components. They transmit signals, coordinate

processes, and exchange substances.

This paper will consider an approach to the virtual integration of tissues and organs
in order to create functional organs using Al modeling. This paper also considers Al
systems and simulators (BioDynaMo, OpenCMISS, DeepCell) to link organelle data
with the functioning of the organs as a whole [61]. For a complete demonstration,

three organs were chosen: the liver, heart, and brain.

As input, organoid components characteristic of each of the organs are used. For the
liver (hepatoid organoids): organoids are assembled from the main parenchymal
cells of the liver and with the help of auxiliary cells such as vascular endothelial cells
(form the vascular network) and cholangiocytes (epithelial cells of the bile ducts). For
the heart (cardioid organoids): cardiomyocytes (contractile muscle cells) and
vascular endothelial cells. Cardioids are 3D modules of the heart for the brain,
self-organizing from pluripotent cells and their derivatives [66]. For the brain
(cerebroid organoids). Cerebroid organoids are 3D structures derived from
pluripotent stem cells that resemble the developing human brain. These organoids
contain types of nerve cells such as neurons, astrocytes (a type of cell that supports

neurons), microglia (the brain's innate immune cells), and oligodendrocytes.

Organoid-Based Brain Modeling



Modeling neural structures. Cerebral organoids (3D brain organoids) reproduce
various aspects of human brain function, including neurogenesis and cortical areas.
Using Al and simulations, researchers are trying to recreate the functional
architecture of the brain based on data from brain organoids. One suitable Al tool is
BioDynaMo [61,63]. For example, a new computer model of the development and
growth of neurons in our brain was built in the Journal of Mathematical Biology 2024
[63]. The simulations used neurons in the hippocampus, a critical brain region
responsible for memory storage. The research team used a method called
“approximate Bayesian inference” (ABS) that successfully simulated the growth
patterns of real brain neurons [63]. This shows that such Al tools are able to simulate
neurogenesis and the network of connections in mini-brains, which in turn can help
understand brain development and various neuron-related diseases. Analysis of
images and signals from brain organoids[63]. Often, the analysis of large and
complex data sets taken from organoids can be ineffective and corrupted. Modern Al
methods offer a promising solution for efficient information extraction, making a
forecast based on various types of data. In particular, algorithms based on
convolutional neural networks are able to segment the nucleus and cells in 3D
images of organelles, tracking their growth and changes. For example, the DeepCell
system was developed so that automatic recognition of microscopic images of cells
completely coincides with the segmentation of human tissues [61]. Al tools such as
DeepCell allow you to accurately analyze the architecture and composition of the

mini-brain, tracking the dynamics of its further changes [61].



Case study: In the Journal of Mathematical Biology 2024, scientists combined the
BioDynaMo simulator with experimental data on the growth of neurons from
organoids [63]. As a result, the simulation reliably reproduced the branching of
hippocampal neurons, similar to in vitro observations [63]. This study shows that the
combination of realistic modeling and Al optimization helps to create a functional
architecture of a part of the brain, in other words, a digital analogue of the neural
network of the organoid, which in turn opens up innovations to the possibility of
virtual testing of hypotheses in the field of neuroscience, without direct experiments

with tissues, which is very important.

Modeling the heart based on organoids

The heart is an organ with a pronounced multi-scale nature, pumping blood
throughout the body. The heart maintains blood circulation and works as a pump,
thereby electrical impulses at the level of ion channels cause cell contraction for this
function. To reproduce such a functional architecture, computed modules are
required. One such tool is the OpenCMISS library [64] - it stores a large part of the
information on multiphysics modeling in biomedicine. OpenCMISS was used to build
three-dimensional models of the heart, where cellular electrophysiological
parameters are integrated into the model of tissue and ventricles [64]. Such
simulations help to predict the propagation of waves and contraction of the heart in

norm and pathology.



Scientists have collected a library of 230 different cardioids of geometric
configurations (rectangles with different sides of the ratios, circles of different
diameters, etc.) [66]. Using methods called "clustering and nonlinear dimensionality
reduction”, the organoids were immediately grouped by similarity [66]. As it turned
out, geometry significantly affected the function. Machine learning made it possible
to identify variables and determine the optimal forms of the organoid to achieve the

specified properties [66]. Thus, Al can help with the creation of a mini heart with the
desired functionality and architecture. An example of Al in cardiology is the Living

Heart project [61]. In this project, the model solves 30 million equations in a real
anatomical frame of the heart and can predict any changes. In subsequent works,
this work is supplemented by Al modules so that it is possible to use clinical data of
ECG and MRI of the heart of patients in order to personalize the simulation [61]. In
general, the modern strategy has two complementary lines: 1) Physically based
simulators [64], 2) Al analysis of cardioid data [66]. Such a combination will help to
accurately create a "virtual heart" on which in the future it will be possible to try

various drugs and treatments without risking the patient's health.

Liver modeling based on organoids

Design of a functional analog of the liver considering processors such as: blood flow
in sinusoids, metabolite transport and cellular signaling networks of hepatocytes. In
the work npj Digital Medicine, 2024, a model of a virtual human liver lobule is
provided [65]. The model considers metabolic zoning, distinguishing enzyme

activities between the periphery and the center of the lobule, which is very important



[65]. Thanks to this, the simulator was able to predict the zonal nature of drug
toxicity, consistent with clinical observations. This is a kind of "digital twin" showing
personalized damage in different patients at a given dose of the drug [65]. Now they
have begun to try to create 3D liver models based on medical images, where each
lobule is described by a set of diffusion reaction equations. Thus, computer

simulators of the liver allow you to create a functional architecture of the organ [65].

Al for liver organoid analysis

There is a developed model DILITracer, which uses a convolutional transformer

trained on 700 thousand cell images, to analyze liver organoids [67].

Organ on a chip

The liver very rarely acts in isolation, it is most often connected to other organs.
Modern approaches try to combine organoids of different types into multi-organ chips
and use Al to analyze interactions [61]. An example of a study is the work of Nature
Communications 2022 [68]. In this study, a liver organoid on a chip was exposed to
an anti-cancer drug, while simultaneously observing its effect on heart cells. Thus,

thanks to the data, it was possible to build a model of the liver-heart connection.

Limitations of existing approaches
Lack and quality of data. In order to use Al modeling, a lot of extensive and reliable
experimental data is required. But obtaining such data for organoids is very difficult

due to biological variability [61,66]. Even with the same protocol, two different



organelles can differ greatly in composition and architecture. In addition, many

processes are simply difficult to observe since datasets are simply not available [61].

Ethical and methodological issues. The use of Al in biology and treatment often
prompts the question: can we fully trust the model when making decisions, especially
when it comes to a clinic [61]. Full certification of models is needed, while the area is

practically not formalized by law [61].

Summary

Al can effectively model the functional architecture of organs such as the liver
[65,67], heart [61,64,66], and brain [61,63] based on organoid components.
However, the reliability and clinical applicability of such modules are entirely
dependent on careful validation [61]. Without proper validation, these modules

remain limited in their exploration and predictions.

Virtual Organism (Animal cell)

Currently, one of the most promising areas is the creation of virtual organisms.
These are full-fledged modules that recreate the interactions of various organs and
systems of the body. These virtually developed modules help to study biological
processes, test new drugs and medications without harming human health.
Models of virtual organisms are computer representations of living systems that
allow you to take into account both physiological and molecular aspects of the

functioning of the body. Such modules allow you to predict the effectiveness of



therapy, assess risks and also develop personalized approaches in medicine. Here

we will consider modern achievements in this field and also limitations.

Input data and models

In order to assemble an accurate model of a virtual organism that will function
correctly, you need to collect all the necessary data from various levels of

organization of biological systems and integrate them [70].

Models and their applications

HumMod- models the physiology of the human body. It includes more than 9,000
variables that describe various physiological processes in the body, allowing you to
study the effects of diseases on the body and its changes in functioning.

WholeBodyPK, OpenCOR, SimBody — pharmacokinetics and dynamics [69].

WholeBodyPK- model, which includes an extended version of the compartmental
absorption and transit (CAT) model of gastrointestinal absorption, additionally
including enterohepatic recirculation, analyzes pharmacokinetics, which in turn

allows tracking how drugs are metabolized in the human body [77].

OpenCOR is an open source environment for organizing, editing, simulating, and

analyzing models encoded in CellML format [71].



SimBody is a dynamic engine that solves problems that arise in biomedical research.
It is also used for scientific and engineering modeling of mechanical systems,

including biomechanical structures [72].

Possibility of using multi-agent RL to coordinate the behavior of organs

The use of multi-agent learning methods, which include 3 structured levels: agent
activation, task planning, and trajectory perception, is a promising direction. For
example, the study "VIKI-R: Coordinating Embodied Multi-Agent Cooperation via
Reinforcement Learning" demonstrates how MARL can be used to coordinate the

actions of complex systems [73].

Detoxification

The kidneys and liver are among the most important parts of the body for

detoxification. With a decrease in kidney function, the liver is damaged. Because of



this, modeling the interactions between the kidney and liver is important. Research
shows that the gut microbiota and its metabolites can influence kidney and liver

health [74,76].

Neurohumoral Loops

The microbiota-gut-brain axis describes the interactions between the gut and the
brain through neural, immune, and endocrine pathways. Modeling this axis allows us
to study microbial metabolites, immune responses, and neural activity, providing

valuable insights into the communication between the gut and the brain [75].

Immune-Liver-Tumor systems

Modeling the interactions between the immune system, liver, and tumors is important
for understanding cancer better and developing treatments for it. Research shows
that the interactions between these systems can significantly affect the effectiveness

of therapy [78].

Limitations

Lack of datasets: The lack of comprehensive data on various parts of human and

other organisms' physiology hinders accurate modeling [70].



The difficulty of simulating chronic processes: Modeling long-term chronic diseases
such as cancer or diabetes is particularly challenging because these processes
develop gradually and can extend over time, and their impact on the body can
manifest itself at different levels. This requires the creation of more complex and

adaptive models that can analyze long-term changes in the body.

(2) Virtual Plant Cell

Architecture and Simulation

Callus Induction and Differentiation Modeling

The induction of totipotent callus represents a uniquely plant-specific route to
pluripotency, in which fully differentiated somatic cells are experimentally
reprogrammed to regain a proliferative, undifferentiated state with the capacity to
regenerate entire organs or even whole plants. This transformation is mediated
primarily by the interplay between auxin and cytokinin, which function not simply as
mitogenic signals but as master regulators of developmental reprogramming,
controlling cell identity, chromatin accessibility, and spatial polarity establishment
[81]. Auxin perception via TIR1/AFB-AUX/IAA-ARF signaling modules initiates
transcriptional programs that destabilize differentiated cell states, promote cell cycle

re-entry, and establish polarity cues, while cytokinin perception through CRE1/AHK



histidine kinase receptors and type-B ARR transcription factors stimulates
meristematic cell proliferation and patterning. The relative auxin-to-cytokinin ratio
operates as a developmental bifurcation parameter: elevated auxin favors
root-meristem-like identity, whereas elevated cytokinin biases toward shoot meristem
specification. In contrast to mammalian systems, where pluripotency arises
intrinsically during early embryogenesis, plant totipotency is not a default
developmental state but rather an induced condition, achieved through exogenous
hormonal regimes that reactivate latent morphogenetic programs otherwise
inaccessible in differentiated tissues. This biochemical reprogramming is
underpinned by genome-wide transcriptional rewiring, including the activation of
pluripotency-associated transcription factors (e.g., WUSCHEL, BABY BOOM),
epigenetic remodeling such as histone acetylation and DNA demethylation, and the
reorganization of intercellular signaling networks, including plasmodesmatal
transport and hormonal flux redistribution. Together, these molecular and cellular
processes collectively reinstate developmental plasticity, rendering the callus
competent to initiate organogenesis or somatic embryogenesis under appropriate

inductive cues [81].

Hormonal Control as a Computational Problem

Auxin perception through the TIR1/AFB-AUX/IAA-ARF signaling cascade
destabilizes repressors of auxin-responsive genes, thereby initiating transcriptional
programs that promote cell cycle re-entry, dedifferentiation, and the establishment of

new polarity axes [81]. Cytokinin is perceived via CRE1/AHK histidine kinase



receptors, which activate type-B ARR transcription factors to stimulate meristematic
cell proliferation, regulate organ boundary formation, and maintain stem cell activity
[81]. The interplay between these pathways is not merely additive but functions as a
developmental bifurcation system in which the auxin-to-cytokinin ratio governs
trajectory selection: elevated auxin biases callus differentiation toward
root-meristem-like states, whereas elevated cytokinin promotes shoot meristem

specification [79,81].

From a computational perspective, such ratio-dependent fate decisions can be
formalized as a multi-stable dynamical system in which hormone concentrations act
as control parameters [79]. In this framework, auxin and cytokinin distributions form
spatially heterogeneous fields shaped by active transport (e.g., PIN-mediated auxin
efflux), passive diffusion, and localized biosynthesis. The resulting gradients
establish positional information that is interpreted by cells to determine
developmental outcomes. Multi-scale models, such as those described by Band et al.
[79], capture this coupling between molecular signaling and tissue-level geometry,
linking intracellular regulatory states to emergent organogenic patterns. These
models are particularly relevant for callus systems, where auxin/cytokinin feedback
loops and spatial transport processes jointly define the accessible differentiation

trajectories.

Trajectory Inference in Plant Systems

Simulating callus differentiation in silico requires reconstructing developmental

trajectories from high-dimensional single-cell transcriptomic profiles, while explicitly



integrating hormone distribution patterns as dynamic covariates. Unlike in
mammalian models, where trajectory inference can often proceed without spatial
constraints, plant systems demand the incorporation of spatial hormone gradients
and the mechanical context imposed by rigid cell walls. This constraint fundamentally
alters both the computational representation of developmental state spaces and the

mathematical modeling of state transitions [79,82].

In plant-specific adaptations, pseudotemporal trajectory mapping must be extended
to account for directional auxin fluxes, driven by polarized transport through
PIN-FORMED (PIN) efflux carriers, and cytokinin redistribution through vascular
networks such as phloem and xylem conduits. These transport processes create
persistent morphogen fields whose local maxima and minima act as positional cues
for cell fate transitions. Multi-scale models integrate these spatial gradients from the
subcellular scale (PIN localization) to tissue-scale vascular architecture, enabling a

quantitative link between hormone topology and differentiation outcomes [79].

Plant single-cell transcriptomic datasets, such as those collated in the Plant Single
Cell Atlas, provide the necessary resolution to couple gene expression dynamics
with hormone signaling domains [82]. By embedding these profiles in
low-dimensional pseudotemporal manifolds, via methods such as Monocle or
diffusion pseudotime, while annotating each cell with local hormone concentrations,
it becomes possible to predict divergence points where callus cells commit toward
root- or shoot-like lineages. This integration produces not just lineage graphs but
spatially anchored fate maps, in which each branch point is contextualized by the

surrounding morphogen landscape [82].



Frameworks like VirtualRoot operationalize this integration by simulating auxin and
cytokinin fields under realistic transport constraints, providing in silico morphogen
distributions that can be aligned with experimental single-cell trajectories. Such
models can thereby test whether predicted branch points coincide with
experimentally observed fate transitions, allowing iterative refinement of both
transport parameters and trajectory inference algorithms [79]. This convergence of
spatial hormone modeling with high-resolution transcriptomic pseudotime
reconstruction offers a pathway to predictive, mechanistically grounded simulations
of plant callus differentiation that are directly translatable to experimental

regeneration systems [79,82].

Graph Neural Networks for Fixed-Topology Systems

In multicellular plant tissues, the spatial arrangement of cells is constrained by the
rigid extracellular matrix and stabilized by cell wall connections, resulting in a
relatively immutable, planar lattice of cell-cell contacts. This structural immobility,
coupled with symplastic connectivity through plasmodesmata, defines a
fixed-topology communication network that lends itself naturally to graph-based
computational formalisms [80]. In such a framework, each cell is represented as a
discrete node characterized by multi-modal feature vectors encompassing its
transcriptomic state, local morphogen profile, mechanical stress parameters, and
positional metadata. Edges encode stable, anatomically defined adjacency relations,
which inherently capture both physical proximity and the potential for direct

molecular exchange.



Graph Neural Networks (GNNs) exploit this representation by performing iterative
neighborhood aggregation, whereby each node updates its state as a function of
both its intrinsic features and the aggregated signals from its immediate neighbors.
In plant developmental contexts, this enables the emergence of biologically
interpretable patterns such as localized auxin enrichment zones, which frequently
coincide with pre-organogenic centers, and cytokinin depletion domains that are
associated with root-like differentiation foci [80]. Unlike statistical correlation models,
which treat each cell as an independent observation, GNNs preserve the explicit
spatial dependencies encoded in tissue topology, allowing predictions to account for

the positional constraints of plant morphogenesis.

Recent methodological advances integrate spatial transcriptomics with GNN-based
architectures to directly couple molecular state variation with tissue geometry. These
models leverage high-resolution single-cell or subcellular transcriptomic maps,
aligning them with reconstructed tissue graphs to infer context-dependent cell fate
trajectories. The fixed-topology assumption simplifies graph construction, enabling
stable node—edge mappings that remain valid across developmental timepoints. In
the context of callus differentiation, such models can resolve fine-scale fate
specification domains, detect shifts in hormone-driven patterning boundaries, and
predict lineage commitment events with greater spatial fidelity than non-graph-based
approaches. This integration of spatial omics data with GNN-driven inference thus
provides a powerful computational paradigm for mechanistically grounded modeling

of plant tissue differentiation under experimentally controlled hormonal regimes [80].

Rule-Based Hormone Diffusion Models



Rule-based simulation offers a mechanistically interpretable approach to modeling
hormone transport during callus differentiation, formalizing auxin and cytokinin
dynamics based on transport laws derived from empirical observations. In such
models, auxin movement is characterized by passive diffusion across cell walls and
active efflux via polarized PIN-FORMED (PIN) proteins, whose localization responds
to local auxin flux, establishing a positive feedback mechanism known as
canalization. These rules produce emergent patterns where auxin flux becomes
self-reinforcing along discrete strand-like pathways, consistent with vascular strand

formation during organogenesis [84].

Similarly, cytokinin dynamics can be encoded through rules governing synthesis,
diffusion, degradation, and inhibitory cross-regulation, allowing the model to

reproduce threshold-mediated suppression of proliferative signaling within callus
tissues. When cytokinin concentration surpasses specified thresholds, the model
applies regulatory feedback to modulate cell division rates and tissue expansion,

emulating observed inhibitory effects on undifferentiated growth.

Crucially, rule-based models support hybridization with machine learning frameworks
to form physics-informed neural networks. In such architectures, the rule-based
component enforces physically plausible hormone transport dynamics, while a neural
network component ingests such additional data as gene expression profiles,
mechanical stress features, or cell shape metrics to adaptively refine spatial

hormone distribution and fate prediction performance.



For example, simplified lattice-based auxin transport models, parameterized by cell
geometry and PIN polarity rules, can be embedded within GNN architectures: nodes
represent cells, edges denote adjacency, and rules dictate local hormone updates.
The neural component updates latent cell states conditioned on rule-based hormone
patterns, enabling simulations in which experimentally tunable parameters, like PIN
localization bias or degradation rates, are modulated to explore alternative
differentiation outcomes. This synergy preserves interpretability while enhancing

predictive flexibility.

Generative Modeling for Hormone Perturbation

Generative neural network frameworks, such as scGen, can be tailored to plant
single-cell datasets to predict transcriptional responses to hormone perturbations
without direct experimental measurements for each condition. In this approach, a
model is trained to capture latent transformations between baseline (pre-treatment)
and perturbed (post-treatment) cellular states, using single-cell RNA-seq data as
input. By embedding cells into a shared latent space, the model infers a “perturbation

vector” that encodes the transcriptional shift induced by specific hormone regimes.

For instance, in Arabidopsis thaliana root callus differentiation, transcriptomic profiles
under varied auxin/cytokinin ratios provide paired datasets from which scGen can
learn both hormone-specific and generalizable transcriptional transitions [83]. Once
trained, the model can apply these learned perturbation vectors to unseen cell
populations, effectively generating in silico predictions for novel hormone

combinations not present in the training set.



This capability is particularly valuable for auxin/cytokinin optimization in regeneration
protocols. Instead of exhaustively testing every hormone ratio experimentally, the
trained generative model can simulate hypothetical treatments, predict
lineage-specific transcriptional trajectories, and rank hormone cocktails for their
likelihood to induce desired tissue fates (e.g., shoot meristem specification vs. root
identity). Importantly, the model output can be cross-referenced with known
transcriptional markers from datasets such as Zhang etal. (2019), which provide

high-resolution single-cell maps of Arabidopsis root developmental stages [83].

Such in silico screening could substantially reduce experimental trial-and-error in
plant biotechnology by narrowing down candidate hormone regimes before wet-lab
validation. In agricultural contexts, this approach could accelerate regeneration
system design for species with recalcitrant tissue culture responses, improving both

efficiency and reproducibility.

Reinforcement Learning for Sequential Induction Strategies

Sequential optimization of plant regeneration protocols can be naturally formulated
as a Markov Decision Process (MDP), where each state corresponds to the
multidimensional cellular context defined by its transcriptomic signature and local
hormonal environment, and each action represents a discrete modification to
auxin/cytokinin concentrations or other culture parameters (e.g., photoperiod,
nutrient composition). The reward is quantified as the proximity of the resulting
cellular state to a predefined target fate, such as shoot meristem initiation or root

primordium formation.



This conceptual framing draws on the methodology established by Sootla et al.
(2013), who demonstrated that reinforcement learning (RL) algorithms can effectively
control genetic toggle-switch networks without explicit mechanistic equations [85]. In
their work, fitted Q-iteration was used to identify optimal sequences of control inputs
that transition the system between distinct stable states, even under stochastic
fluctuations. Translating this approach to plant systems, RL can be deployed to
iteratively discover hormone application schedules that drive callus populations
toward desired differentiation outcomes, guided only by empirical feedback from

model predictions or experimental readouts [85].

Such an RL-based framework offers several advantages over traditional static
hormone-ratio experiments. First, it enables adaptive control, where hormonal inputs
are dynamically adjusted in response to intermediate cellular states rather than being
fixed a priori. Second, it supports multi-step intervention planning, capturing the
temporal dependencies between early dedifferentiation cues and later organogenic
commitments. Finally, by training on in silico callus differentiation models, RL agents
can pre-screen complex induction strategies before costly wet-lab validation, thereby

reducing experimental burden and accelerating protocol optimization.

In this paradigm, the integration of RL with spatial-temporal hormone transport
simulations and single-cell resolution transcriptomic mapping holds the potential to
transform plant tissue engineering from a largely empirical discipline into a

quantitatively predictive science [85].

Challenges and Data Limitations



A key constraint in modeling plant callus induction lies in the limited availability of
systematically annotated single-cell datasets under controlled hormonal
perturbations. While comprehensive platforms such as Cell[STAR integrate
multi-species transcriptomic resources and advanced annotation pipelines, most
plant datasets remain sparse in both temporal resolution and experimental diversity
[82]. This limits the capacity of computational frameworks to reconstruct accurate
developmental trajectories, particularly when simulating differentiation outcomes

across variable auxin/cytokinin regimes.

Moreover, multi-factorial environmental influences, including light spectrum and
intensity, mechanical perturbation, and nutrient microgradients, interact non-linearly
with hormone signaling networks. These interactions can reshape morphogen
distribution patterns, alter transporter localization, and modulate receptor sensitivity,
thereby introducing confounding variability not captured in standard single-cell
profiling workflows. The lack of concurrent spatial and environmental metadata in

most public datasets further complicates mechanistic interpretation.

A fundamental distinction from mammalian stem cell systems exacerbates this
challenge: plants do not possess a universal, intrinsic pluripotent “ground state.”
Instead, totipotency emerges only under context-specific hormonal, metabolic, and
biomechanical conditions. Consequently, models trained on a given tissue type or
genotype often fail to generalize to other developmental origins or species with
distinct hormonal sensitivities. This necessitates frequent retraining or domain

adaptation of predictive algorithms when extending to new plant systems.



Finally, without iterative integration of experimental design and computational
modeling, even advanced machine learning pipelines risk overfitting to narrow data
regimes. Active learning strategies, whereby models identify the most informative
perturbations for subsequent experiments, could help overcome these constraints.
However, achieving robust generalization will ultimately depend on expanding the

diversity, resolution, and contextual richness of plant single-cell datasets [82].

In sum, simulating callus induction and differentiation is not merely a statistical
prediction task but a multi-scale integration problem spanning transcriptional
regulation, hormone transport physics, and spatial tissue architecture. Combining
GNN-based spatial reasoning, rule-based morphogen diffusion, and VirtualRoot-like
organogenic simulation offers the most promising route toward predictive,
mechanistically grounded in silico plant morphogenesis. Such models could
accelerate the rational design of plant regeneration protocols, enabling

high-throughput in silico testing of agricultural biotechnology interventions.

Spatial and Vascular Patterning

The spatial and vascular organization of plant tissues is one of the most fundamental
determinants of plant form and function. Across the plant kingdom, the precise
arrangement of xylem, phloem, and their cambial progenitors governs not only the
mechanical stability of organs but also the efficiency of long-distance transport for
water, nutrients, and signaling molecules. This arrangement is not fixed; it emerges
dynamically from a complex interplay between genetic programs, hormone

gradients, and biomechanical forces exerted by surrounding cells. In roots and



leaves, vascular patterning underpins the establishment of organ polarity, the
partitioning of developmental zones, and the plant’s capacity to adapt to

environmental pressures.

Understanding this organization in full resolution has been a longstanding challenge
in plant biology. Historically, anatomical studies provided structural descriptions,
while molecular analyses offered gene expression profiles, yet these two views
rarely converged at cellular resolution. Classical histology preserved the architecture
but lacked comprehensive molecular readouts. Conversely, bulk and even single-cell
transcriptomics revealed the molecular identity of cells but erased their positional
context upon tissue dissociation. This loss of spatial information meant that gene
expression could be described, but the positional logic, exactly the way expression

patterns align with morphogenetic processes, remained obscured.

The advent of spatial transcriptomics has changed this paradigm. By capturing in situ
gene expression while preserving the native geometry of tissues, spatial methods
restore the missing positional context. In Arabidopsis thaliana, high-resolution spatial
maps have revealed sharply delineated developmental domains: the vascular
cambium, the differentiating procambium, mature xylem vessels, and phloem sieve
elements [86]. These maps do more than localize known cell types, uncovering
fine-scale developmental gradients, such as the gradual auxin-mediated transition
from procambial cells into lignified xylem. The ability to anchor transcriptional states
in their native topography has opened the door to a mechanistic understanding of

how morphogen gradients and positional cues orchestrate vascular differentiation.



Yet, even the most detailed spatial datasets face an inherent limitation: they are often
generated from selected tissue sections, representing snapshots in time and space.
To bridge the gap between dissociated high-throughput datasets and these spatial
snapshots, Al-driven computational frameworks have emerged as transformative

tools.

Tangram [87], a probabilistic deep learning algorithm, integrates scRNA-seq and
spatial transcriptomics by projecting dissociated transcriptomic profiles back into
their most probable spatial coordinates. Unlike simple alignment methods, Tangram
reconstructs continuous developmental trajectories, preserving subtle expression
gradients that would otherwise be lost. In the context of vascular patterning, Tangram
has successfully mapped auxin-responsive procambial populations into continuous
radial and longitudinal gradients, revealing the molecular progression toward mature

xylem vessels.

SpaGCN [88] takes this integration further by embedding both transcriptional
similarity and spatial adjacency into a graph convolutional network. This allows not
only the recovery of known domains but also the discovery of previously
uncharacterized transcriptional territories, including nested subdomains within
mesophyll layers and bundle sheath cells in leaves. Such modeling preserves the
three-dimensional anatomical precision required for Virtual Plant Cell simulations,
ensuring that gene expression is interpreted in the full context of its histological

surroundings.



These Al-powered mappings are not merely descriptive; they form the computational
backbone for predictive modeling of morphogenesis. Platforms such as TissueMaker
extend spatial reconstructions into simulations of vascular differentiation under
hormonal perturbations. For instance, by incorporating models of auxin transport and
cytokinin signaling, TissueMaker can predict how vascular topology shifts when
auxin flux is inhibited, or how cambial proliferation expands in response to elevated
cytokinin. These simulations can be run across developmental time series, allowing
researchers to forecast organ-level outcomes under specific genetic or

environmental modifications.

Such predictive capacity is critical for the Virtual Plant Cell framework. By embedding
spatial and vascular patterning data into a computationally manipulable 3D scaffold,
the Virtual Plant Cell becomes a testbed for hypothesis-driven experimentation.
Researchers can virtually introduce mutations, simulate drought-induced hormonal
rebalancing, or test hypothetical transcription factor knockouts — all while observing
their predicted effects on vascular architecture. This shifts the role of computational

plant biology from passive reconstruction toward active experimental design.

Ultimately, the integration of high-resolution spatial transcriptomics, Al-driven
mapping, and predictive morphogen modeling transforms our capacity to understand
and manipulate plant development. In this integrated view, vascular patterning is no
longer just an anatomical outcome: it is a dynamic, data-driven system that can be
probed, perturbed, and even redesigned in silico. For the Virtual Plant Cell, this

means the possibility of generating not just a digital replica of plant anatomy, but a



living, evolving blueprint that responds to genetic, hormonal, and environmental

changes in real time.

Simulating Agrochemical Responses

Understanding the physiological impact of agrochemicals at the cellular and tissue
levels is critical for predicting plant responses under agricultural interventions. Two
key aspects, namely herbicide toxicity and stomatal regulation, represent important
targets for computational simulation, as they directly influence crop viability,

photosynthetic efficiency, and water use under field conditions.

Herbicide Toxicity Prediction

Herbicides are designed to disrupt specific metabolic or signaling pathways in plants,
yet their off-target effects and environmental persistence can lead to substantial
ecological risks [79]. To address this, deep learning frameworks such as DeepTox
have been applied to high-dimensional chemical structure-activity datasets, including
ChEMBL and HerbicideDB, enabling accurate prediction of molecular toxicity
profiles. These models utilize molecular fingerprints and graph-based
representations to classify compounds by phytotoxicity risk and to identify
substructures associated with elevated hazard potential [81]. By simulating
dose-response curves and extrapolating potential synergistic effects, such predictive

systems provide a virtual screening layer before field trials.

Stomatal Regulation Modeling



The regulation of stomatal aperture is a primary determinant of gas exchange and
water loss, and is influenced by both endogenous signals (abscisic acid, CO:
concentration) and exogenous chemical stimuli [80]. Certain herbicides and growth
regulators can trigger stomatal closure or malfunction, leading to reduced
transpiration and altered photosynthetic performance. Graph neural network (GNN)
architectures, such as CropNet, integrate chemical features with plant physiological
data to model stomatal conductance changes in response to agrochemical exposure.
These hybrid models capture complex non-linear interactions between chemical
structure, hormonal signaling, and guard cell ion channel activity, enabling

quantitative forecasts of stomatal behavior under varying agrochemical treatments.

Integrated Simulation Pipeline

In the Virtual Plant Cell framework, these approaches converge into an Al-driven
agrochemical response module. Molecular descriptors from ChEMBL and
HerbicideDB are fed into DeepTox-like toxicity classifiers, which rank compounds by
predicted phytotoxic risk. In parallel, CropNet-style GNN models simulate stomatal
conductance responses to these compounds, accounting for developmental stage,
tissue-specific sensitivity, and environmental conditions. Coupled with organ-scale
physiological simulators, this integration enables in silico testing of herbicide
formulations, guiding the selection of compounds with maximal efficacy and minimal

physiological disruption.

Applications and Integration



The integration of spatial and vascular patterning into whole-plant modeling
represents a decisive step toward multiscale virtual plant systems capable of
predicting development and performance under diverse environmental conditions. By
providing a high-fidelity 3D map of tissue organization and vascular topology, spatial
data serve as the anatomical and functional scaffold upon which dynamic

physiological simulations can be built [86,87,92].

From Tissue Architecture to Whole-Plant Physiology

Vascular patterning defines the conduits for water, nutrient, and hormone transport
throughout the plant. This internal transport network dictates how efficiently a plant
can redistribute resources in response to developmental needs or environmental
perturbations. In whole-plant simulations, these spatially resolved vascular maps
provide such structural parameters as xylem vessel density, phloem sieve element
connectivity, and cambial growth potential that determine hydraulic conductance,
assimilate allocation, and long-distance signaling [93]. Without this level of detail,
growth models cannot accurately represent the plant’s capacity for systemic

adaptation.

Coupling with Functional-Structural Plant Models (FSPMs)

Functional-structural plant models (FSPMs) simulate the interplay between organ
development, resource transport, and environmental interactions [93]. By embedding
Al-derived vascular maps into FSPMs, it becomes possible to dynamically link local
tissue differentiation with global physiological outputs. For example, auxin transport

dynamics modeled at the root tip can influence lateral root initiation patterns, which



in turn alter whole-root architecture and water uptake capacity. Similarly, leaf
vascular density patterns directly modulate transpiration rates and photosynthetic

efficiency in canopy-level light distribution models [87,92].

Simulating Stress Responses

Under abiotic stress conditions, like drought, salinity, heat, or nutrient limitation,
vascular patterning often undergoes profound reorganization. In drought scenarios,
for instance, simulated auxin and cytokinin rebalancing may lead to increased xylem
lignification and reduced vessel diameter, adaptations that improve water-use
efficiency but limit maximal growth rate [94]. Salt stress simulations may reveal
altered phloem loading patterns to maintain osmotic balance. Integrating these
tissue-level adaptations into whole-plant models enables prediction of not just
morphological changes, but also shifts in yield, biomass allocation, and survival

probability.

Predictive Breeding and Genetic Design

The predictive power of this integration extends beyond academic modeling into
applied plant engineering. By testing virtual genetic modifications (e.g.
overexpression of cambium-activating transcription factors or suppression of auxin
efflux carriers) researchers can forecast how vascular architectures would
reconfigure and what systemic physiological consequences would follow [86,87].
This capability allows breeders and bioengineers to screen candidate modifications

in silico before committing to time- and resource-intensive wet-lab validation.



Toward Real-Time Growth Simulation

When coupled with environmental sensing and feedback loops, spatially integrated
whole-plant models could support near-real-time prediction of plant growth
trajectories in controlled environments [92,93]. This would enable adaptive
management strategies in precision agriculture, where irrigation schedules, nutrient
delivery, or light regimes are dynamically adjusted based on predicted vascular and
growth responses. In this vision, the Virtual Plant Cell evolves into a Virtual Plant

System — a multiscale, continuously updated digital twin of the living organism.

In summary, incorporating spatial and vascular patterning into whole-plant modeling
transforms the Virtual Plant Cell from a static anatomical reconstruction into a
dynamic predictive platform. It links the molecular and tissue-scale drivers of
development to organ- and plant-scale performance, enabling unprecedented
capacity to simulate, forecast, and ultimately design plant growth strategies under

both optimal and stress-inducing conditions.

(3) Virtual Bacteria Cell



Virtual Bacterial Cell: Architecture and Simulation

Creating a virtual model of a bacterium is a unique task that differs from modeling
eukaryotic cells. Bacteria are able to grow rapidly, exhibit metabolic flexibility, carry
out horizontal gene transfer, and exhibit complex collective behaviors such as biofilm

formation and antibiotic resistance.

The purpose of this section is to describe the architecture of an artificial intelligence
model that can simulate both the state of a single bacterial cell and the behavior of

entire populations in response to chemical and genetic stimuli.

Modeling of genetic regulation and cell state

A virtual bacterium is based on a model of its internal state, which, like a digital
eukaryotic cell, is not a static structure, but a dynamic system capable of responding
to environmental changes. This subsection describes how genomic, transcriptomic,
and phenotypic data are used to train a model that reproduces the physiological

properties of a bacterium.

Data sources: from genomics to phenotype

Various types of data serve as the basis for modeling. In contrast to the analysis of
unicellular eukaryotes, bacterial systems are more characterized by massive RNA

sequencing obtained under various conditions with a lack of nutrients, stress, and



exposure to antibiotics. These datasets allow us to identify global changes in

transcription [95].

The central element is the gene regulatory networks (GDS), which have been well
studied in model organisms such as Escherichia coli and are available in databases
such as RegulonDB. GRNs are a mechanistic system that links transcription factors

(TF) to their target genes and determines the regulatory logic of the cell.

Of particular importance is the availability of data on antibiotic resistance genes
(ARG), which are cataloged in databases such as the Comprehensive Database on
Antibiotic Resistance (CARD). In addition, the results of CRISPR interference
(CRISPRI) and genome-wide knockout make it possible to directly link the functions
of genes with phenotypic manifestations, such as survival under drug load

conditions.

From data to model: latent space and phenotype prediction

Direct use of multidimensional gene expression vectors (covering thousands of
genes) requires large computing power and is fraught with noise. Therefore, as in
the case of eukaryotic models, the key step is to reduce dimensionality using
methods such as variational autoencoders (VAE) [96] or other deep learning
architectures. These models compress multidimensional expression data into a
compact latent space, where each point represents a specific physiological or
metabolic state of the bacterium. The axes of this space often correspond to

biological processes such as growth rate, stress response, or cell cycle stage [97].
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Pic 1. VAE architecture scheme: The encoder compresses multidimensional expression data in a hidden space,

and the decoder reconstructs them, which makes it possible to simulate cell states. [98]

Based on this latent representation, predictive models can be trained. For example,
a neural network can learn to evaluate phenotypic characteristics, such as the
minimum inhibitory concentration (MIC) of an antibiotic, based on the position of the
bacterium in the latent space. In addition, models such as DeepARG apply deep
learning to genomic sequences to identify resistance genes, which makes it possible

to enrich the latent space with functional genomic information [99].



Modeling of biofilms and colonies

A realistic virtual cell should be able to dynamically change its internal state.
Generative models adapted for bacterial systems, such as scGen or CPA
(Compositional Perturbation Autoencoder), make it possible to model transcriptomic
responses to various external stimuli [100]. These models are able to predict how the
gene expression profile will change upon exposure, even if there was no

corresponding condition in the training dataset [101].

The integration of gene regulatory networks directly into the neural network
architecture, as in models such as DeepGRN, increases biological plausibility [102].
In these implementations, the structure of the neural network reflects known
regulatory interactions, providing interpretability and allowing you to track

cause-and-effect relationships within the cell [102].

From individual agents to collective dynamics

To create a fully formed virtual organism, it is necessary to move from modeling
individual bacterial cells to modeling behavior at the population level. Bacteria exhibit
collective behaviors such as biofilm formation and spatial colony morphogenesis,
which are crucial for survival and pathogenicity. This behavior requires modeling
spatial interactions, sharing metabolic resources, and chemical communication

between cells[103][104].

Agent-based modeling (ABM)



The main computational basis for population modeling is agent-based modeling.
Each virtual bacterium created in “Modeling of genetic regulation and cell state”
functions as an independent agent. Its internal state, represented in a hidden space,

determines its actions: growth, division, extracellular matrix production or mobility.

The ABM environment includes a spatial grid for modeling the diffusion of nutrients
and signaling molecules, as well as interaction rules for determining quorum,
competition, and horizontal gene transfer. Modeling platforms such as BacSim[8] and
iDynoMiCS [104] provide ready-made solutions for spatial and mechanistic

modeling.

Antimicrobial and Chemical Interaction Simulation

Simulating the interaction of a virtual bacterial cell with antimicrobial agents is
essential to understand and predict bacterial behaviour in various
microenvironments. This subsection reviews the mechanisms used to simulate
antibiotic action and to determine the Minimum Inhibitory Concentration (MIC),

highlighting the important role of Al and relevant datasets in the field.

Antibiotic resistance, or Antimicrobial resistance refers to the ability of a microbe to
resist the effects of the drugs they have previously been exposed to and it is one of

the most important modern problems for public health. According to the U.S. Centers



for Disease Control and Prevention (CDC), antibiotic resistance caused more than 2
million bacterial infections, 23,000 fatalities, and resulted in annual economic losses
of 55 billion dollars in the United States. Even though the possibility of bacterias
developing strong antibiotic resistance was forewarned for years, there were no
significant interventions concerning this problem and it remains relevant to this day.
Bioinformatic or computational biology approaches to bacteria and antibiotic

resistance will play a key role in pushing antibiotic resistance research forward [107].

Modelling the antibiotic action within the virtual bacterial cells involves simulating
complex molecular and cellular processes that occur in the cell upon exposure to

various drugs.

According to Butterfield et al. (2012), “The Minimum Inhibitory Concentration (IMC) is
defined as the lowest or minimum antimicrobial concentration that inhibits visible
microbial growth in artificial media after a fixed incubation time” [106]. Simulating
MIC in a virtual bacterial population is helpful for predicting the efficiency of various
antibiotics against specific strains. This result could be achieved by modeling
bacterial population growth at different antibiotic concentrations and finding a

threshold at which the population growth stops.

To improve the accuracy of such simulations,specialized Al models such as
DeepARG are used:
e DeepARG: ARGs are antibiotic resistance genes that are one of the keys for

bacterial resistance against antibiotics. DeepARG is a novel instrument that



uses Deep Learning to enhance the accuracy of simulations and help them

better predict ARGs [99].

Relevant datasets: For the training and validation of Al models in the context of
antimicrobial interaction simulations, as well as to increase the accuracy of these
models, the following datasets are highly relevant:
e CARD: The Comprehensive Antibiotic Resistance Database is a large,
peer-reviewed dataset of resistance determinants and associated antibiotics.
It was organized by the Antibiotic Resistance Oncology (ARO) and

specialized AMR gene detection algorithms [105].

Integration of these softwares and the usage of the relevant databases is crucial for
the success and accuracy of the models simulating bacterias’ interaction with

antibiotics.

Ecosystem Integration

Microbiomes, made from various viruses and bacterias, play a key role in human

health and environmental processes. Our understanding of microbiomes is still



limited and hindered by their complexity [109]. In order to deepen our knowledge in
this sphere, Machine Learning and Deep Learning algorithms can be employed to
process vast amounts of metagenomic, transcriptomic, and proteomic data to identify
patterns, predict possibilities, and simulate microbiomes. In the context of a virtual
bacterial cell, this allows for modeling how changes in one bacterial species or

environmental conditions can impact the functions of the entire microbiome.

Quorum Sensing (QS) is a process of cell-cell communication that allows bacterias
to share information about cell density with each other and adjust gene expression
accordingly. Bacteria synthesize and release signaling molecules, autoinducers, into
their environment. When the amount of autoinducer molecules reaches a specific
threshold (indicating a high population density), bacteria activate or deactivate

specific genes, coordinating population-level responses [108].

Discussion

The cross-kingdom virtual cell framework presented here establishes a unified
strategy for simulating biological complexity across fundamentally different domains:
animal, plant, and bacterial systems. This unification is not a superficial conceptual
exercise but a practical step toward standardizing simulation pipelines that can
translate computational advances from one kingdom to another. By positioning

pluripotent iPSCs, totipotent plant callus cells, and programmable bacterial colonies



as functional analogues, the framework opens a pathway for cross-application of

modeling tools, training datasets, and validation strategies [5,6].

From a methodological perspective, one of the strengths of this approach lies in its
transferability. Predictive modeling workflows initially developed for human iPSC
organoids can be adapted for plant meristem simulations or bacterial biofilm
dynamics with only domain-specific modifications. This adaptability reduces the need
for building entirely new simulation infrastructures for each biological context and
instead encourages modularity and interoperability. Similar transfer learning
concepts have been successfully demonstrated in computational genomics and
spatial transcriptomics alignment, where architectures trained on one dataset could

be fine-tuned for related biological questions without full retraining [4].

Another critical dimension is the ability to address multi-scale biological behavior.
Traditional virtual models often succeed in reproducing either molecular-scale
interactions or population-scale patterns, but rarely both with equal fidelity. By
combining agent-based simulation, physics-informed modeling, and Al-driven
generative frameworks, the proposed architecture has the potential to bridge scales
by linking single-cell gene expression states to emergent tissue- or colony-level
behaviors. This approach aligns with the emerging hybrid modeling paradigm that
couples mechanistic simulation with data-driven inference to predict developmental

dynamics and perturbation responses [2].

Nevertheless, integration across kingdoms is not without obstacles. Standardization

of data formats, ontologies, and annotation methods remains a major barrier to



interoperability. High-quality volumetric datasets are abundant in human and animal
single-cell research but far less developed in plant and microbial contexts [5]. This
asymmetry risks producing unbalanced predictive capabilities unless data acquisition
efforts are strategically aligned across domains. Moreover, reliance on Al models
without sufficient mechanistic grounding can introduce artifacts, namely biological
predictions that fit the data but fail in the real world. Hybrid approaches, where
learned statistical patterns are constrained by physical laws and experimentally

validated mechanistic rules, remain the most robust path forward [1].

The implications of this framework extend beyond purely technical benefits. In drug
discovery, it could facilitate in silico patient-specific testing that informs trial design
[7]. In agriculture, it could provide pre-field digital screening of agrochemicals under
variable climate and soil scenarios, potentially reducing costly late-stage failures. In
microbiology, it could enable early detection of treatment-resistant microbial
configurations, including mixed-species biofilms — one of the most significant
challenges in clinical microbiology due to their ability to persist on medical devices,
evade host immune responses, and facilitate horizontal gene transfer between
pathogens [1]. These communities not only complicate eradication strategies but
also serve as reservoirs for multi-drug-resistant genes that can rapidly disseminate
across bacterial populations. Embedding biofilm-specific genomic and metabolic
signatures into virtual bacterial colony models could enable proactive intervention

design before resistance phenotypes become clinically entrenched.

Looking ahead, progress will depend on collaborative infrastructure: shared,

cross-kingdom benchmarking datasets; open, extensible simulation toolkits; and



formal validation protocols that unify in vitro and in silico pipelines. The long-term
vision is a network of interoperable virtual cells, spanning animals, plants, and
bacteria, capable of exchanging simulation components and predictive modules
much like software libraries in other engineering disciplines. Such a resource would
transform virtual cells from stand-alone research artifacts into foundational tools for

experimental design, policy development, and translational innovation.

Conclusion

This study advances a unified, cross-kingdom framework for Al-driven virtual cell
modeling, integrating three biologically and functionally distinct yet conceptually
analogous systems: animal iPSC-derived organoids, plant callus-based virtual
meristems, and bacterial colony-scale models. By bridging these domains, the
framework addresses a persistent fragmentation in computational biology, offering a
scalable architecture capable of simulating complex developmental processes and

perturbation responses across vastly different biological kingdoms.

In biomedical research, the integration of Al-enhanced iPSC models into virtual
organism pipelines promises to accelerate drug discovery, reduce late-stage clinical
failures, and minimize reliance on ethically and economically costly animal testing. In
agricultural biotechnology, virtual plant cells have the potential to revolutionize
agrochemical safety assessment by predicting developmental and toxicological

outcomes before entering labor-intensive greenhouse and field trials. In microbiology,



virtual bacterial colonies can become powerful predictive tools for modeling antibiotic
resistance emergence and optimizing antimicrobial interventions — critical in an era

where antimicrobial resistance poses a global health emergency.

The proposed architecture is not merely a conceptual bridge; it is a pragmatic
blueprint for implementing multi-scale, hybrid modeling approaches that combine
physics-based simulation, agent-based modeling, and Al-driven predictive analytics.
Such convergence enables both the mechanistic fidelity of traditional computational
biology and the adaptive, data-driven insight of modern machine learning. While
challenges remain, most notably in acquiring standardized, high-resolution datasets
and ensuring biological plausibility in Al-generated outputs,the trajectory is clear:
unified virtual cell systems can become foundational to predictive, reproducible, and

ethically aligned bioscience.

Ultimately, the framework presented here positions virtual cell modeling as a
transformative enabler across medicine, agriculture, and microbiology. By
establishing a common language and computational infrastructure for these
domains, it lays the groundwork for a new era of cross-kingdom virtual biology, one
in which simulation is not merely a complement to experimentation, but an equal

partner in discovery and innovation.
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	Introduction  
	Problem of traditional drug testing 
	Drug development remains a high‑risk, high‑cost endeavor, with attrition rates in clinical trials persistently exceeding 85-90 % across therapeutic areas [7]. In oncology, success rates can be as low as 3-5 %, reflecting poor translatability of preclinical results to human outcomes [7]. Conventional animal models, though historically indispensable, frequently fail to replicate human physiology and disease complexity, leading to inaccurate predictions of efficacy and safety [5]. These translational gaps contribute to 12-15 years of development timelines and costs averaging $2-2.5 billion per approved drug [7]. In addition, regulatory, ethical, and reproducibility concerns are driving the search for alternative models that better capture human biology without relying heavily on in vivo animal studies. 
	Potential of virtual organism models 
	Advances in induced pluripotent stem cells (iPSC) and organoid technologies are redefining the preclinical landscape. Human iPSC‑derived organoids can self-organize into physiologically relevant 3D architectures that mimic native tissue functions, enabling modeling of organ‑level drug responses [6]. This capability supports personalized medicine approaches where patient‑specific cells are used to predict individual drug responses. Parallel developments in AI‑driven virtual modeling, including multi‑omics integration, spatial transcriptomics alignment [4], and in silico patient simulations, are accelerating the design‑build‑test‑learn (DBTL) cycle for therapeutic discovery [2].​Importantly, regulatory shifts such as the FDA Modernization Act 2.0 recognize “new approach methods” (NAMs) as viable alternatives to animal testing, opening a pathway for AI‑enhanced virtual models to play a central role in preclinical decision‑making [7]. 
	From Animal to Non‑Animal: Redefining the Stem Cell Analogy 
	While iPSC and embryonic stem cell (ESC) systems have revolutionized modeling in human and animal biology, analogous regenerative and self‑organizing systems exist in other kingdoms. This work proposes extending the virtual cell framework, which was traditionally centered on animal stem cells, to include plant callus cells and bacterial colonies as functionally analogous platforms. 
	Animal iPSC: capabilities and pipeline 

	iPSCs are pluripotent, capable of differentiating into virtually any somatic lineage. In vitro, they can be directed toward specific tissues or combined into organoids that replicate aspects of organ physiology [6]. These models support drug toxicity screening, disease modeling, and personalized therapy prediction. Integration with AI, spatial transcriptomics, and predictive modeling tools [4] enables simulation of developmental trajectories and response profiling at single‑cell resolution. 
	Why this analogy matters for digital modeling 
	Plant callus cells as functional analogs 

	Plant callus cells are totipotent: any differentiated plant cell can revert to a pluripotent‑like state and regenerate an entire organism under the influence of phytohormones such as auxin and cytokinin. This mirrors the role of morphogen signaling (e.g., BMP4, Activin A) in iPSC reprogramming. As in animal systems, callus formation follows distinct molecular pathways that can be predicted, manipulated, and optimized, making them viable candidates for AI‑driven virtual plant cell modeling. In sum, such models could accelerate agrochemical testing by forecasting toxicity and growth effects prior to greenhouse or field trials. 
	Bacterial cells as self‑organizing, programmable systems 

	Limitations of existing models and the novelty of this work 

	scVI  
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	DeepCell 
	Virtual Organism (Animal cell) 
	Architecture and Simulation 
	Callus Induction and Differentiation Modeling 
	Hormonal Control as a Computational Problem 
	Trajectory Inference in Plant Systems 
	Graph Neural Networks for Fixed-Topology Systems 
	Rule-Based Hormone Diffusion Models 
	Generative Modeling for Hormone Perturbation 
	Reinforcement Learning for Sequential Induction Strategies 
	Challenges and Data Limitations 

	Spatial and Vascular Patterning 
	Virtual Bacterial Cell: Architecture and Simulation 
	Creating a virtual model of a bacterium is a unique task that differs from modeling eukaryotic cells. Bacteria are able to grow rapidly, exhibit metabolic flexibility, carry out horizontal gene transfer, and exhibit complex collective behaviors such as biofilm formation and antibiotic resistance. 
	The purpose of this section is to describe the architecture of an artificial intelligence model that can simulate both the state of a single bacterial cell and the behavior of entire populations in response to chemical and genetic stimuli. 
	Modeling of genetic regulation and cell state 
	A virtual bacterium is based on a model of its internal state, which, like a digital eukaryotic cell, is not a static structure, but a dynamic system capable of responding to environmental changes. This subsection describes how genomic, transcriptomic, and phenotypic data are used to train a model that reproduces the physiological properties of a bacterium. 
	Data sources: from genomics to phenotype 

	Various types of data serve as the basis for modeling. In contrast to the analysis of unicellular eukaryotes, bacterial systems are more characterized by massive RNA sequencing obtained under various conditions with a lack of nutrients, stress, and exposure to antibiotics. These datasets allow us to identify global changes in transcription [95]. 
	 The central element is the gene regulatory networks (GDS), which have been well studied in model organisms such as Escherichia coli and are available in databases such as RegulonDB. GRNs are a mechanistic system that links transcription factors (TF) to their target genes and determines the regulatory logic of the cell. 
	 Of particular importance is the availability of data on antibiotic resistance genes (ARG), which are cataloged in databases such as the Comprehensive Database on Antibiotic Resistance (CARD). In addition, the results of CRISPR interference (CRISPRi) and genome-wide knockout make it possible to directly link the functions of genes with phenotypic manifestations, such as survival under drug load conditions. 
	From data to model: latent space and phenotype prediction 

	 Direct use of multidimensional gene expression vectors (covering thousands of genes) requires large computing power and is fraught with noise. Therefore, as in the case of eukaryotic models, the key step is to reduce dimensionality using methods such as variational autoencoders (VAE) [96] or other deep learning architectures. These models compress multidimensional expression data into a compact latent space, where each point represents a specific physiological or metabolic state of the bacterium. The axes of this space often correspond to biological processes such as growth rate, stress response, or cell cycle stage [97].​​Pic 1. VAE architecture scheme: The encoder compresses multidimensional expression data in a hidden space, and the decoder reconstructs them, which makes it possible to simulate cell states. [98] 
	Based on this latent representation, predictive models can be trained. For example, a neural network can learn to evaluate phenotypic characteristics, such as the minimum inhibitory concentration (MIC) of an antibiotic, based on the position of the bacterium in the latent space. In addition, models such as DeepARG apply deep learning to genomic sequences to identify resistance genes, which makes it possible to enrich the latent space with functional genomic information [99]. 
	Modeling of biofilms and colonies 
	A realistic virtual cell should be able to dynamically change its internal state. Generative models adapted for bacterial systems, such as scGen or CPA (Compositional Perturbation Autoencoder), make it possible to model transcriptomic responses to various external stimuli [100]. These models are able to predict how the gene expression profile will change upon exposure, even if there was no corresponding condition in the training dataset [101]. 
	 The integration of gene regulatory networks directly into the neural network architecture, as in models such as DeepGRN, increases biological plausibility [102]. In these implementations, the structure of the neural network reflects known regulatory interactions, providing interpretability and allowing you to track cause-and-effect relationships within the cell [102]. 
	From individual agents to collective dynamics 

	To create a fully formed virtual organism, it is necessary to move from modeling individual bacterial cells to modeling behavior at the population level. Bacteria exhibit collective behaviors such as biofilm formation and spatial colony morphogenesis, which are crucial for survival and pathogenicity. This behavior requires modeling spatial interactions, sharing metabolic resources, and chemical communication between cells[103][104]. 
	Agent-based modeling (ABM) 

	The main computational basis for population modeling is agent-based modeling. Each virtual bacterium created in “Modeling of genetic regulation and cell state” functions as an independent agent. Its internal state, represented in a hidden space, determines its actions: growth, division, extracellular matrix production or mobility. 
	The ABM environment includes a spatial grid for modeling the diffusion of nutrients and signaling molecules, as well as interaction rules for determining quorum, competition, and horizontal gene transfer. Modeling platforms such as BacSim[8] and iDynoMiCS [104] provide ready-made solutions for spatial and mechanistic modeling. 
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