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Introduction  

Problem of traditional drug testing 

Drug development remains a high‑risk, high‑cost endeavor, with attrition rates in 

clinical trials persistently exceeding 85-90 % across therapeutic areas [7]. In 

oncology, success rates can be as low as 3-5 %, reflecting poor translatability of 

preclinical results to human outcomes [7]. Conventional animal models, though 
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historically indispensable, frequently fail to replicate human physiology and disease 

complexity, leading to inaccurate predictions of efficacy and safety [5]. These 

translational gaps contribute to 12-15 years of development timelines and costs 

averaging $2-2.5 billion per approved drug [7]. In addition, regulatory, ethical, and 

reproducibility concerns are driving the search for alternative models that better 

capture human biology without relying heavily on in vivo animal studies. 

Potential of virtual organism models 

Advances in induced pluripotent stem cells (iPSC) and organoid technologies are 

redefining the preclinical landscape. Human iPSC‑derived organoids can 

self-organize into physiologically relevant 3D architectures that mimic native tissue 

functions, enabling modeling of organ‑level drug responses [6]. This capability 

supports personalized medicine approaches where patient‑specific cells are used to 

predict individual drug responses. Parallel developments in AI‑driven virtual 

modeling, including multi‑omics integration, spatial transcriptomics alignment [4], and 

in silico patient simulations, are accelerating the design‑build‑test‑learn (DBTL) cycle 

for therapeutic discovery [2].​

Importantly, regulatory shifts such as the FDA Modernization Act 2.0 recognize “new 

approach methods” (NAMs) as viable alternatives to animal testing, opening a 

pathway for AI‑enhanced virtual models to play a central role in preclinical 

decision‑making [7]. 

From Animal to Non‑Animal: Redefining the Stem Cell Analogy 

 

 

 



While iPSC and embryonic stem cell (ESC) systems have revolutionized modeling in 

human and animal biology, analogous regenerative and self‑organizing systems exist 

in other kingdoms. This work proposes extending the virtual cell framework, which 

was traditionally centered on animal stem cells, to include plant callus cells and 

bacterial colonies as functionally analogous platforms. 

Animal iPSC: capabilities and pipeline 

iPSCs are pluripotent, capable of differentiating into virtually any somatic lineage. In 

vitro, they can be directed toward specific tissues or combined into organoids that 

replicate aspects of organ physiology [6]. These models support drug toxicity 

screening, disease modeling, and personalized therapy prediction. Integration with 

AI, spatial transcriptomics, and predictive modeling tools [4] enables simulation of 

developmental trajectories and response profiling at single‑cell resolution. 

Why this analogy matters for digital modeling 

 

 

 



 

This cross‑kingdom perspective is not merely theoretical. In human health, 

AI‑enhanced modeling of iPSC directly addresses the reproducibility crisis in 

preclinical research and reduces reliance on animal testing. In infectious disease 

management, AI‑driven methods such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and gradient‑boosted decision trees already 

enable rapid pathogen detection, resistance prediction, and antibiotic treatment 

optimization, cutting inappropriate prescriptions by up to 67 % in urinary tract 

infection cases [1]. 

Plant callus cells as functional analogs 

In agriculture and environmental biotechnology, plant virtual cells could transform 

agrochemical safety testing. Currently, greenhouse and field trials are expensive and 
 

 

 



slow, and many candidate compounds fail late in development, defined as a pattern 

analogous to drug discovery bottlenecks [2]. AI‑guided virtual plant models could 

simulate hormone‑driven developmental responses (e.g., auxin/cytokinin balance) to 

predict pesticide efficacy and toxicity before costly real‑world trials. 

Plant callus cells are totipotent: any differentiated plant cell can revert to a 

pluripotent‑like state and regenerate an entire organism under the influence of 

phytohormones such as auxin and cytokinin. This mirrors the role of morphogen 

signaling (e.g., BMP4, Activin A) in iPSC reprogramming. As in animal systems, 

callus formation follows distinct molecular pathways that can be predicted, 

manipulated, and optimized, making them viable candidates for AI‑driven virtual 

plant cell modeling. In sum, such models could accelerate agrochemical testing by 

forecasting toxicity and growth effects prior to greenhouse or field trials. 

Bacterial cells as self‑organizing, programmable systems 

In microbiology, bacterial virtual colonies could function as predictive testbeds for 

antibiotic resistance evolution and biofilm‑associated treatment failure — problems 

that conventional in vitro assays poorly capture. Although bacteria lack traditional 

multicellular differentiation, they demonstrate remarkable programmability. Through 

engineered gene circuits, phase variation, and biofilm formation, bacterial colonies 

can display coordinated behaviors with emergent properties. Biofilms, in particular, 

are clinically significant responsible for up to 65 % of human infections and 

displaying antibiotic resistance 10-1000 times greater than planktonic cells [1]. 

AI‑powered genomic and phenotypic prediction pipelines already achieve > 90 % 

 

 

 



accuracy in resistance classification [2] and resistance for pathogens like 

Staphylococcus aureus and Pseudomonas aeruginosa [2], highlighting the readiness 

of bacterial systems for integration into a virtual colony modeling framework. 

Therefore, by extending the virtual cell concept beyond animal paradigms, we can 

address multiple high‑stakes bottlenecks across health, agriculture, and 

biotechnology. 

Limitations of existing models and the novelty of this work 

These challenges extend beyond human therapeutics. Agrochemical development 

faces a severe efficiency problem: large numbers of pesticide candidates fail in 

late‑stage field testing due to unforeseen crop toxicity or insufficient pest control [2]. 

The lack of predictive, mechanistically accurate in silico plant models prolongs 

time‑to‑market and increases development costs. 

In microbiology, antimicrobial resistance (AMR) continues to outpace the 

development of new antibiotics. Globally, AMR was directly responsible for 

1.27 million deaths and associated with 4.95 million deaths in 2019, and is projected 

to cause up to 10 million annual deaths by 2050 without intervention [1]. In addition, 

up to 65 % of all human infections involve biofilms, which drastically reduce antibiotic 

efficacy [1]. 

AI models have demonstrated tangible clinical utility, for example, real‑time 

prescription optimization in sepsis that aligns with clinical practice, and 

 

 

 



genomic‑driven resistance prediction with > 90 % accuracy [2]. However, these tools 

remain siloed from plant and bacterial virtual modeling pipelines. 

Our proposed framework unifies these disparate efforts into a cross‑kingdom 

AI‑based virtual cell architecture, enabling reproducible, scalable, and 

mechanistically grounded predictive modeling across biomedical, agrochemical, and 

environmental domains. 

 

Background 

Today, biological modeling has increasingly relied on artificial intelligence tools that 

can analyze complicated data and predict cellular behavior[8]. However, well before 

AI, scientists used rule-based simulators grounded in mechanistic principles, wherein 

a user would define particular biological rules, such as chemical reactions, diffusion, 

or physical constraints, and the system would simulate the resulting dynamics[9].The 

use of these transparent and interpretable tools facilitates hypothesis testing, 

generates detailed, quantitative predictions, and allows exploration of all "what-if" 

scenarios[10]. On the other hand, their obvious disadvantage is that the approach 

requires clearly designed input parameters and a very good understanding of the 

biology of the system under consideration[9].They may also have difficulty scaling in 

large, data-rich environments that AI-based models excel in, learning patterns 

directly from the data[11]. To illustrate the strength and weaknesses of this 

methodology, the paper will focus on three commonly used platforms: Virtual Cell 

 

 

 



(VCell), PhysiCell, and CompuCell3D. They embody an almost complete spectrum of 

ways to model cells and tissues-from molecular-level[12]. 

​

The Virtual Cell (VCell) platform serves perfectly in simulating the impact of spatial 

organization on intracellular processes[14]. Users can specify reaction networks 

within biological compartments, say the cytoplasm, nucleus, or extracellular 

space[14]. These configurations are then automatically translated by the system into 

mathematical models using ordinary or partial differential equations (ODEs/PDEs). 

With options for deterministic and stochastic solvers, and several inbuilt geometries 

of cells for 2D/3D modeling (one can import cell geometries from microscopy), VCell 

facilitates spatially-resolved simulations aligned with imaging data and structurally 

analyzable with regard to spatial effects on signal transduction and regulatory 

dynamics solvers[14]. One of the unique capabilities of VCell is integrated rule-based 

modeling, where the user is allowed to specify reaction rules (using BioNetGen 

language-BNGL) without needing to list every reaction, thus enabling network-free 

simulation of combinatorially large systems. VCell, in fact, incorporates the NFSim 

network-free simulator to accommodate large rule-based models with a high number 

of potential species configurations[15].To summarize, VCell is designed to span 

multiple modeling formalisms: deterministic, stochastic, spatial, non-spatial, and 

rule-based, all accessible in a single platform[12].​

Inside, VCell uses a tiered approach: a BioModel defines the species, 

compartments, reactions (or rules), while specific Applications inside the BioModel 

define the simulation type (ODE, PDE, deterministic, or stochastic), geometry, and 

solver settings[14]. From the biological model definition, VCell automatically 
 

 

 



generates the necessary math equations (such as systems of ODEs or PDEs), 

freeing users from the task of manual derivation of equations. It shares with the user 

a graphical user interface and database-backed environment in which one builds 

models by drawing compartments and reactions; the math that bog-they-minds may 

be inspected and even directly edited[14]. 

An open-source, physics-based framework for simulating multicellular systems in 

both 2-D and 3-D environments is PhysiCell[17]. It is designed to scale 

computationally and efficiently; thus, simulations of 10⁴-10⁶ interacting cells and 

dozens of diffusing biochemical substrates can run smoothly on a desktop, 

high-performance cluster, or cloud infrastructure (PhysiCell, n.d.). PhysiCell 

synergizes tightly with BioFVM: a parallelized solver for swiftly computing the 

diffusion, decay, and uptake of multiple substrates (such as oxygen, glucose, drugs, 

signaling molecules) that take place discreetly in 3D space-however, the direct 

coupling of extracellular gradients with cellular responses also happens-migration, 

growth arrest, or apoptosis[19]. Whereas lattice models force cells into fixed 

positions on the lattice, PhysiCell operates off-lattice, with cells assigned continuous 

spatial coordinates as autonomous agents. These positions and mechanical 

interactions vary dynamically through physical laws, rendering discretization artifacts 

largely moot. PhysiCell includes some prebuilt agents for major cellular mechanics 

and behavior submodels that are biologically realistic[17].  

Each cell is internally represented by a hierarchical Phenotype data structure, which 

stores variables like cell cycle phase, death state, volume, motility parameters, and 

secretion rates. Instead of manually coding these behaviors, users define 
 

 

 



environmental dependencies (e.g., "low oxygen increases necrosis") that 

dynamically update phenotype variables during simulation[20].This allows users to 

focus on modeling how microenvironmental conditions influence standard cellular 

behaviors, rather than re-implementing those behaviors themselves[20].PhysiCell 

also supports a human-readable, rule-based modeling language, which allows users 

to specify such logical or quantitative rules as “TGF-β reduces motility” or “oxygen 

below 5 mmHg increases apoptosis” that are automatically compiled into executable 

code at runtime [17].This promotes reproducibility and interpretability by reducing the 

need for low-level programming and enabling annotated model components. 

The framework is implemented in standard C++ with minimal external dependencies, 

making it portable across platforms and easy to maintain [20]. It supports 

multithreaded execution via OpenMP, allowing simulations to scale linearly with the 

number of cells. PhysiCell’s modular design enables seamless integration with other 

modeling tools: for example, Boolean regulatory networks via PhysiBoSS, 

extracellular matrix modeling via PhysiMeSS, and intracellular signaling pathways 

using ODE solvers like libRoadRunner. These features make it suitable for 

multi-scale, multi-physics modeling across diverse biological systems[20]. ​

​

PhysiCell is developed by a collaborative community of researchers, with continuous 

improvements enhancing its biological realism, computational efficiency, and 

interoperability with emerging modeling standardshttps[17]. While the platform was 

initially designed for cancer modeling, its architecture is general-purpose and has 

since been adapted to simulate a wide variety of biological processes[17]. Its 

 

 

 



diffusion solvers and phenotype modules are broadly applicable, enabling its use in 

fields such as tissue engineering, angiogenesis, microbial ecology, and immune 

system dynamics. 

Thanks to its modular architecture and core functionality, PhysiCell allows users to 

develop custom libraries for simulating physiological systems similar to how 

Microvessel Chaste was built upon the Chaste simulator, which is also based on 

biophysical principles [12]. Furthermore, users can define new types of substrates 

(e.g., extracellular matrix with zero diffusion), add custom cell types (e.g., fibroblasts 

with high motility and matrix-modifying behavior), and construct entire cellular 

systems, such as vascular networks that secrete oxygen and respond to gradients of 

angiogenic growth factors [21]. ​

​

​

CompuCell3D is an intuitive and flexible modeling environment designed for building 

in silico virtual tissue simulations without requiring extensive programming expertise. 

Its scriptable architecture allows for rapid development and sharing of models across 

a wide range of multiscale, multicellular biological problems [22]. Written in C++ and 

equipped with Python bindings for model and simulation development, CompuCell3D 

uses the Cellular Potts Model (CPM) to simulate cell behavior, including shape 

changes, adhesion, and movement within tissues[23]. 

Application areas of CompuCell3D include angiogenesis, bacterial colony growth, 

cancer, developmental biology, tissue engineering, immune responses, evolutionary 

mechanisms, toxicology, and even modeling of non-cellular soft materials[22]. These 
 

 

 



domains significantly overlap with those of PhysiCell, particularly in modeling 

cell–cell interactions and tissue behavior under dynamic microenvironmental 

conditions[12]. 

CompuCell3D models are configured through XML files (CC3DML), where CPM and 

PDE settings are defined, and Python scripts known as stepables execute custom 

logic during simulations. Low-level calculations are optimized in C++ for speed, while 

high-level behaviors are accessible through a rich Python API[23]. Plugins further 

expand functionality, enabling processes such as chemotaxis, external force 

application, cell elongation, and adhesion manipulation[22]. 

scVI  

Single-cell Variational Inference, or scVI, is a deep generative model that uses a 

variational autoencoder (VAE) on single-cell RNA-seq count data [28]. It is trained 

using a probabilistic model (usually a negative-binomial likelihood) and a 

KL-divergence term in the VAE loss on the raw gene expression count matrix (raw 

UMI counts, not log-transformed). In actual use, scVI is frequently configured by first 

registering the raw counts in an AnnData object (scvi-tools), after which a 

low-dimensional latent embedding is learned that allows for the modeling and 

"denoising" of technical variation (batch, library size). Differential expression, 

clustering, and dimensionality reduction can all be done with the learned latent 

space. When it came to integrating intricate datasets and eliminating batch effects 

while maintaining biological variability, scVI excelled in benchmark studies. For 

instance, Lopez et al. (2018) demonstrated that scVI performed well on tasks such 
 

 

 



as DE analysis, batch correction, visualization, and clustering[28]. Due to its 

generative nature, scVI can also be used to sample from the latent space in order to 

create new "virtual" cells (for example, generating gene-expression profiles for 

fictitious cell states) or interpolate between conditions, both of which are useful for 

exploratory analysis [31]. To summarize, scVI employs raw count data to train a VAE 

with a reconstruction loss (negative-binomial or ZINB) plus KL divergence. This 

results in a probabilistic latent embedding that corrects batch effects and lowers 

dimensionality.  

 

Figure 1. An outline of the general design of two different representation models for scVI 

autoencoders. This diagram shows how raw counts are embedded into a latent space and 

the encoder/decoder structure. 

 

In terms of data, batch labels and the unnormalized count matrix or raw UMI counts 

are used to train scVI. The model employs an evidence lower bound (ELBO) 

objective (reconstruction error + KL divergence) and assumes a discrete count 

distribution (Poisson or negative-binomial). Frequently, the model handles 

 

 

 



library-size normalization without the need for a previous log-transformation. After 

training, scVI yields a latent embedding that can be used for clustering, differential 

expression testing, and visualization (such as UMAP). According to studies, it 

successfully eliminates technical batch effects. By decoding to expression space and 

sampling from the learned latent prior, it can also produce new cells. These "in silico" 

cells can be used to enhance datasets or investigate unobserved cell states. 

 

Figure 2. The diagram illustrates how the model produces normalized representations and 

how batch annotations are incorporated during training (The scvi-tools development team, 

2025 [33]). 

scGen 

Single-cell perturbation prediction, or scGen, is a VAE-based model created 

especially to forecast how single-cell gene expression will alter in response to 

perturbations (such as medication therapy or genetic knockouts) [29]. By learning 

distinct latent representations for every condition and cell type during training, it 

 

 

 



integrates a standard VAE with latent vector arithmetic, ensuring that the effect of a 

perturbation is represented by a constant vector shift in latent space [29]. In reality, 

scGen learns to encode each cell into a latent space conditioned on treatment by 

using as inputs the raw gene expression counts along with condition labels (such as 

control vs. treated). By appending the acquired "perturbation vector" to the latent 

representation of a control cell and then decoding back to expression space, scGen 

can forecast an invisible condition after training. Accordingly, scGen can replicate the 

effects of treatment on different cell types and even species. Lotfollahi et al. (2019) 

showed that scGen captures biological response signatures by accurately modeling 

drug or infection responses across cell types and studies[29]. The ability of scGen to 

forecast how a novel drug or stimulus would change the transcriptome of cells not 

visible in the training data is a crucial downstream application in silico drug testing. 

When annotated data were available, scGen (with cell-type labels provided) 

performed better than many other models in benchmarks for predicting perturbations 

[31]. 

 

scGen is usually trained using paired conditions on the same raw scRNA-seq counts 

as scVI. Each cell's stimulus or condition is listed on the training label. It employs a 

conditional VAE approach, which is essentially a CVAE, along with KL divergence 

and reconstruction loss, which is typically negative-binomial or MSE on 

log-expression. In essence, scGen learns an embedded condition vector: the model 

adds or subtracts perturbation effects using vector arithmetic after embedding cells 

and covariates (conditions) into the latent space. scGen can transfer a perturbation 

from one cell type or study to another after training. For instance, by extrapolating 
 

 

 



from data on another cell type, it can mimic the appearance of an iPSC-derived 

neuron under a specific medication. It is helpful in silico combinatorial effect and 

dose-response prediction. The performance of scGen is on par with or better than 

other integration techniques when cell-type labels are known, according to 

nature.com. Generative investigation of perturbation effects is made possible by 

scGen's generation of "predicted" single-cell profiles under novel circumstances 

through the decoding of latent vectors. 

DeepCell 

Van Valen Lab's DeepCell framework is a collection of deep learning tools that were 

first created for single-cell analysis using images. Using convolutional neural 

networks trained on high-dimensional microscopy data (multi-channel images, 

time-series) to carry out tasks like cell segmentation, classification, tracking, and 

phenotyping is the main concept. Van Valen et al. (2016) demonstrated, for instance, 

that supervised CNNs are capable of accurately segmenting the cytoplasm and cell 

nuclei of both mammalian and bacterial cells, even differentiating between distinct 

cell types within the same image[34]. DeepCell models heavily rely on data 

augmentation and are trained on labeled image patches (such as microscopy 

images with annotated cell masks). Rotating and flipping images greatly enhanced 

segmentation in Van Valen's study (augmented training sets of 200-400k patches 

from a few hundred cells). The network learns to produce instance segmentations or 

cell masks, and the loss is usually a pixel-wise segmentation loss, cross-entropy or 

Dice. DeepCell has recently branched out into multi-task networks such as 

 

 

 



combining segmentation and classification and cloud-scalable tools including 

DeepCell Kiosk. For example, in highly multiplexed images, the CelloType model 

[32] jointly segments cells and classifies cell types using a transformer-based CNN. 

In general, DeepCell's ecosystem comprises models for: 

-​ Delineating cell and nuclear boundaries in 2D/3D microscopy with 

performance at or above human level is known as segmentation [26]. 

-​ Cell tracking is the process of connecting cells over time to create lineages. 

-​ Determining cell types or states based on image features (e.g. via clustering 

or CNN classifiers) known as phenotyping. 

 

Figure 3. DeepCell multi-modal pipeline overview[25].  

 

 

 

 



Despite its imaging focus, DeepCell is multimodal in nature; the lab also investigates 

the relationship between morphology and molecular states. For instance, the goal of 

DeepCell's GenAI platform is to combine gene expression and cell morphology, or 

"multiomics"[27]. Therefore, DeepCell offers a "digital cell" framework in which 

transcriptomic readouts are linked to image data (perhaps from live, label-free 

imaging). Applications of DeepCell models include automatically profiling cells in 

tissues such as distinguishing immune cells from tumor cells in cancer images  and 

to use cloud deployment to speed up extensive image analysis. Raw pixel data from 

multi-channel microscopy is used in DeepCell networks. Fluorescence or 

phase-contrast images with manually annotated segmentation masks (nucleus, 

cytoplasm, whole cell) are common training data sources. To increase robustness, 

training uses data augmentation (rotations by 90° increments and reflections). In 

order to predict segmentation maps, models frequently employ CNN architectures 

such as U-Net or others with multi-resolution features that have been trained using 

supervised loss (cross-entropy or Dice). Dropout can be applied to fully connected 

layers, but given the paucity of manually annotated data, heavy augmentation is 

crucial. 

 

Different data formats are used by these AI models. Single-cell RNA count matrices 

are consumed by scVI and scGen. Importantly, they anticipate receiving input from 

discourse.scverse.org in the form of raw UMI counts, not log- or 

library-size-normalized counts. Both are VAE-based; they use the standard ELBO 

loss function, which combines a KL-divergence and a reconstruction term. For 

counts, the reconstruction term usually takes a negative-binomial (or zero-inflated 
 

 

 



Poisson) distribution. Any normalization is learned internally during training, negating 

the need for external feature scaling. Expression counts are generally not subjected 

to data augmentation in the conventional sense (such as permuting or adding noise), 

though certain VAE variants may employ subsampling or dropout masking. 

 

 

Figure 4. U-Net / VAE latent embedding comparison [24]. Latent space separation is shown 

graphically in this diagram, which is useful for describing cell simulation or cluster 

separation. 

 

DeepCell models, on the other hand, are trained using image data. Multi-channel 

microscopy images (e.g., one channel of nuclear stain and one channel of phase 

 

 

 



contrast) or even dozens of fluorescence channels in multiplexed assays are 

examples of input [30,31]. Pixel-level segmentations or object masks serve as 

ground truth labels. Extensive image augmentation is used during training. Van Valen 

et al. (2016) demonstrated that flipping and randomly rotating patches by 0°, 90°, 

180°, and 270° greatly enhances segmentation performance[34]. Usually, the output 

mask suffers a supervised segmentation loss (such as the Dice coefficient or 

cross-entropy). Dropout is used to regularize sparingly, usually only in 

fully-connected layers. 

 

DeepCell networks classify and segment images with human-level accuracy by 

identifying cells and subcellular structures [34]. For instance, DeepCell can identify 

each cell in multiplexed imaging or spatial transcriptomics and then pair it with 

marker expression to assign a cell-type label. Cell morphology, local cell density, and 

spatial context can all be precisely quantified thanks to the segmentation output. 

Cells by phenotype can also be directly classified from images using different 

DeepCell models (or branches of a network). Other analyses may use these image 

features as inputs (e.g., predicting gene expression from image or vice versa). As 

generative VAEs, scVI and scGen are able to create new data. By decoding and 

sampling latent vectors, scVI can produce "virtual" cells. When given unperturbed 

inputs, scGen specifically produces perturbed cells. The goal of DeepCell's most 

recent GenAI models is to create artificial cell images in novel settings (such as how 

a cell would appear following medication treatment). This suggests that multi-modal 

digital cells will be possible in the future when models are able to integrate 

modalities, predicting an image from expression or vice versa. 
 

 

 



 

In conclusion, deep learning is used by contemporary AI-based models such as 

scVI, scGen, and DeepCell to learn data-driven cell models without the need for 

hardwired biology. They optimize variational or deep convolutional networks (with 

losses like KL divergence or cross-entropy) using raw high-dimensional inputs (RNA 

counts or images). These techniques have empirically demonstrated excellent 

performance in actual single-cell studies. For instance, DeepCell models have been 

utilized for high-throughput tissue imaging, and scVI/scGen has been applied to 

human iPSC differentiation data and other scRNA-seq tasks. Their accuracy and 

usefulness are validated by benchmarking across studies. These tools are essential 

parts of the contemporary single-cell toolkit because they work together to enable 

strong downstream analyses, such as creating new cellular profiles, integrating 

datasets, and categorizing cell phenotypes. 

 

For our research, scVI should be used for batch-corrected latent embedding and 

dataset integration in our study on virtual organism construction using iPSC data; 

scGen is best suited for simulating transcriptomic responses to perturbations, such 

as virtual drug testing; and DeepCell can be integrated during tissue-level modeling 

and spatial reconstruction. These tools work together to create a complementary AI 

toolkit that includes spatial morphology, perturbation response, and gene expression 

dynamics. This toolkit is essential for simulating the transformation of a single cell 

into a functional virtual tissue or organ. 

 

 

 

 



Main body 

Digital Representation of the Cell: From Expression to Model in 

Animal cell 

The transformation of a biological cell into a computational model, here referred to as 

a virtual cell, represents a cornerstone in systems biology, computational modeling, 

and AI-driven drug discovery. A virtual cell is more than a static abstraction of cellular 

traits; it is a dynamic, data-driven construct capable of simulating gene expression 

changes, regulatory shifts, and phenotypic responses in reaction to stimuli such as 

transcription factors, small molecules, or environmental stressors. This subsection 

details the theoretical and technical underpinnings of digital cell modeling, tracing the 

evolution from raw single-cell omics to trainable generative models. 

Biological Data Foundations: From scRNA-seq to GRNs and Perturbations 

 

 

 



 

The foundation of any digital cell model begins with single-cell RNA sequencing 

(scRNA-seq), a technology that has revolutionized our understanding of cell 

heterogeneity, differentiation landscapes, and context-specific gene expression [35]. 

Through scRNA-seq, it is possible to decompose tissue samples into individual 

transcriptomes, offering a high-dimensional representation of gene activity at the 

single-cell level. Recent projects such as the Tabula Muris Senis and Human Cell 

Atlas have provided expansive scRNA-seq datasets, which now serve as key 

training corpora for generative AI [36,37]. 

Beyond expression, gene regulatory networks (GRNs) offer a structured view of how 

cellular transcriptional output is orchestrated. These networks model the directed 

interactions between transcription factors (TFs) and their target genes, often 

reconstructed using statistical inference, Bayesian methods, or perturbation-based 

 

 

 



learning algorithms [38]. Importantly, GRNs provide interpretability, ensuring that 

models do not merely correlate but embed causality in gene activity [39]. 

Another key layer includes drug perturbation signatures, as popularized by the 

LINCS L1000 database and the Connectivity Map, which systematically profile 

transcriptomic responses to thousands of chemical and genetic perturbations [40]. 

These datasets provide functional input–output mappings critical for simulating 

virtual interventions. 

From Data to Representation: Vectorization and Latent Spaces 

Once biological data are collected, the next challenge lies in embedding them into a 

mathematical space suitable for simulation. In the simplest form, a cell can be 

represented as a vector of gene expression values or activity levels of GRN nodes. 

However, such high-dimensional representations are often noisy and redundant. As 

such, dimensionality reduction is crucial, not only to reduce computational complexity 

but to extract biologically meaningful features. 

Variational autoencoders (VAEs) and their probabilistic derivatives (e.g., scVI) have 

become the gold standard for this task [28]. These models compress 

high-dimensional expression profiles into a latent space, which is a continuous, 

low-dimensional embedding that captures the essence of cellular identity. This space 

is not only useful for clustering or visualization but forms the backbone for simulation, 

enabling interpolation between cellular states or projection into hypothetical 

conditions [41, 42] 

 

 

 



In this framework, each cell is an embedding in latent space, where neighboring 

points reflect biological similarity, and directions correspond to biological processes, 

such as cell cycle, activation, or differentiation. The latent variables can thus be 

interpreted as axes of variation shaped by biological programs. 

Modeling Transitions: Dynamic Behavior and Perturbation  

Response 

A true virtual cell must not only represent a static identity but simulate how that 

identity evolves in response to changes. This capability emerges in dynamic 

generative models, such as the Compositional Perturbation Autoencoder (CPA) and 

scGen, which allow conditional simulation of transcriptomic outcomes [29,30]. CPA 

extends the VAE framework by conditioning both encoder and decoder on covariates 

such as perturbation type, dose, or time point, thus enabling extrapolative 

generalization across unseen conditions. 

For example, given a latent embedding of a CD34+ hematopoietic stem cell, CPA 

can predict its transcriptional state after exposure to interferon-gamma, even if that 

specific combination was never observed in training. Such capabilities are 

particularly valuable in virtual drug testing, where one wishes to simulate the effect of 

a compound on diverse cell types without empirical experimentation. 

Such trajectory inference models as Monocle, PAGA, or RNA velocity further 

augment simulation by reconstructing pseudo-temporal orderings of cells based on 

scRNA-seq snapshots [43, 44]. These models offer vector fields over latent space, 

 

 

 



suggesting how cells move from progenitor to terminal states. When embedded into 

virtual cells, these dynamics enable the simulation of developmental trajectories, 

disease progression, or reprogramming under transcription factor induction. 

Integrating Structure and Interpretability 

 

To ensure interpretability and biological realism, newer models integrate mechanistic 

priors, notably, GRNs or biochemical kinetics, into deep learning frameworks. For 

instance, DeepGRN and GeneCircuit models encode prior knowledge into neural 

network architectures, ensuring that learned embeddings reflect known TF-gene 

relationships [45,46]. This approach addresses one of the core challenges of 

black-box deep learning: biological plausibility. 

Additionally, physics-informed machine learning and differentiable simulators such as 

Differentiable Cell (DiffC) attempt to integrate spatial constraints, diffusion, or 

feedback loops into cell-level simulations [47]. These hybrid approaches offer the 

benefits of both worlds: data-driven accuracy and mechanistic transparency. 

 

 

 

 



Virtual Animal Cell 

 

Input Data 

Simulating organoid growth in a three-dimensional environment involves capturing 

both intracellular dynamics and cell–microenvironment interactions. To accurately 

reproduce morphogenesis, differentiation, and cellular self-organization, hybrid 

approaches leverage biophysical models guided by AI methods. These models rely 

on several key data sources: multi-cell single-cell RNA sequencing (scRNA-seq) for 

defining cell types and transcriptional states; precise spatial growth conditions (e.g. 

Matrigel stiffness, extracellular matrix composition, biochemical gradients); and 

imaging data (high-resolution 3D/4D microscopy of organoids) to calibrate and 

validate morphology, cell arrangement, and dynamic behaviors [48]. Of these input 

modalities, as discussed earlier, scRNA-seq serves as a key element throughout the 

virtual modeling pipeline – from lineage validation to AI-driven cell behavior 

modeling. To clarify, single-cell transcriptomics provides a comprehensive map of the 

cell states and differentiation trajectories within the organoid, ensuring that each 

simulated cell type behaves in accordance with its real-world counterpart. In practice, 

scRNA-seq data can guide the assignment of cell phenotypes in agent-based 

models or serve as training data for AI algorithms that predict cell fate decisions. 

Moreover, realistic spatial context is crucial; factors such as matrix stiffness and 

nutrient gradients influence how organoids develop structures like lumens or 

vascular networks, so these conditions must be encoded in the simulation. 

Concurrently, time-lapse imaging data offers ground-truth for growth patterns and 

 

 

 



organoid morphology changes over time, helping to tune model parameters (e.g. cell 

proliferation rates, movement) so that in silico organoids mirror in vitro observations. 

 

AI and Hybrid Modeling Approaches 

A hybrid modeling approach combines data-driven AI techniques with mechanistic, 

physics-based simulations to capture the complexity of 3D organoid development 

[49]. On the AI side, generative models like 3D Generative Adversarial Networks 

(GANs) and Variational Autoencoders (VAEs) have been proposed to synthesize 

realistic 3D forms. For example, a 3D-GAN can be trained on volumetric organoid 

imaging data to generate new plausible organoid morphologies under different 

conditions, allowing exploration of how changes in growth factors might alter 

organoid shape. The application of GANs/VAEs to de novo 3D morphogenesis is still 

nascent – AI-driven generation of complex organoid structures remains an emerging 

research area with limited training data, so currently AI is rarely used directly to 

create novel 3D morphogenetic predictions [50]. Nevertheless, such generative 

models hint at the potential for AI to suggest novel organoid architectures beyond 

what has been experimentally observed. 

Meanwhile, deep learning is making an impact in organoid image analysis and 

morphology quantification. Tools like OrganoID [51] provide a versatile deep learning 

platform that can automatically recognize and track individual organoids in 

microscopy images, measuring features such as organoid count, size, and shape 

over time. OrganoID demonstrated >95% agreement with manual counts of 

pancreatic cancer organoids and ~97% for organoid size, without parameter 

 

 

 



adjustments, and it maintained single-organoid tracking accuracy above 89% over 

four days. Such AI-driven image analysis platforms accelerate high-throughput 

phenotypic measurements: for instance, OrganoID can trace exact organoid shapes 

and monitor changes (e.g. in circularity, solidity, eccentricity) under different drug 

treatments automatically [51].This enables direct validation of simulation outputs – 

one can compare simulated organoid sizes or shapes with real image-derived 

metrics.  

Another example, sometimes termed "OrgaNet," refers to deep neural networks 

designed for organoid morphological analysis, including segmentation of organoid 

structures and even cell nuclei within them. These networks (often based on 3D 

U-Net or similar architectures) can convert raw imaging data into quantitative 

morphological descriptors that feed into or benchmark the simulations [52].​

On the mechanistic side, agent-based modeling frameworks simulate each cell as an 

independent “agent” following biological rules. Platforms such as PhysiCell and 

CellModeller allow researchers to embed cells in a 3D space where they grow, 

divide, move, and interact according to biophysical laws. For example, PhysiCell [53] 

is an open-source simulator that can model thousands of interacting cells, linking cell 

behaviors (division, death, secretion, etc.) to diffusible signals and mechanics in the 

microenvironment [53]. On the mechanistic side, agent-based modeling frameworks 

simulate each cell as an independent “agent” following biological rules. Platforms 

such as PhysiCell and CellModeller allow researchers to embed cells in a 3D 

environment where they grow, divide, move, and interact according to biophysical 

laws. For example, PhysiCell [53] is an open-source simulator that can model 

 

 

 



thousands or even millions of interacting cells, linking cell behaviors (division, death, 

secretion, etc.) to diffusible signals and mechanics in the microenvironment.  

Ghaffarizadeh et al. [53] describe PhysiCell as a 3-D agent-based framework with 

built-in submodels for cell cycle, apoptosis, mechanics, and coupling to diffusion 

solvers for nutrients and signals. Using such a framework, one can simulate an 

organoid starting from a few stem cells that proliferate and self-organize: cells 

experience forces like cell–cell adhesion and pressure from confined growth, 

consume nutrients, and respond to signaling gradients – leading to emergent 

structures reminiscent of real organoids. For instance, agent-based models naturally 

capture phenomena like hollow lumen formation at the core (via cell polarization and 

apoptosis of interior cells) and spatial metabolic gradients (e.g. hypoxic center vs. 

oxygenated periphery in larger organoids) when appropriate rules are included. 

Experimental observations show that cells losing contact with a matrix or nutrient 

supply often undergo apoptosis and accumulate in the organoid lumen [54], and 

diffusion limits cause intrinsic hypoxic cores in organoids lacking vasculature [55]. By 

calibrating the model with experimental data (e.g. nutrient diffusion lengths or 

cell-death rates), these behaviors – luminal clearing and spatial differentiation – 

emerge in simulations, matching real organoid morphology.  

Crucially, hybrid models can integrate AI with these mechanistic simulations, using 

machine learning to discover or optimize certain rules. For example, an evolutionary 

algorithm or other optimization method might tune dozens of model parameters so 

that the simulation outcomes (organoid size distribution, cell type proportions, etc.) 

match experimental observations. In practice, researchers have begun to combine 

data-driven components with physics-based models: Camacho-Gomez et al.[49] 
 

 

 



present a framework where a neural network is trained on image-derived metrics to 

regulate cell “decision-making” within an agent-based organoid model [49]. In their 

approach, the simulation calls a deep learning model to decide which cell behavior 

(divide, differentiate, etc.) should occur, and a genetic algorithm optimizes the neural 

network so that the simulated pattern fits the observed morphogenesis [49]. This 

kind of AI-in-the-loop strategy shows how machine learning can augment traditional 

simulations – for instance, by predicting cell fate outcomes from gene expression or 

microenvironment data, and feeding those predictions into the next time-step of the 

simulation. Similarly, metaheuristic algorithms have been used to automatically tune 

agent-based model parameters for better agreement with data [56], illustrating the 

power of AI to handle complex parameter spaces that are intractable by manual 

adjustment. Notably, graph-based AI approaches have potential to further enrich 

these simulations. Graph Neural Networks (GNNs) can represent each cell as a 

node in a graph, with edges embodying cell–cell interactions (such as physical 

contacts or signaling proximity). Recent studies demonstrate that GNN models can 

learn the rules of cell fate coordination from live tissue imaging data [57].  

For example, Yamamoto et al. [57] showed that an interpretable GNN, given 

spatiotemporal cell-tracking data from a live epithelium, could predict a cell’s fate 

(e.g. division or differentiation) based on its neighbors and reveal distinct “neighbor 

interaction” rules governing multicellular dynamics. 

In an organoid context, one could likewise use a GNN to model how signals from 

neighboring cells influence a cell’s behavior. During a simulation, the GNN would 

dynamically update each cell’s state by passing “messages” along the cell interaction 

network (mimicking juxtacrine signaling, contact inhibition, etc.), providing an efficient 
 

 

 



approximation of complex cell–cell communication. This approach is especially 

attractive for capturing emergent patterning – for example, how a small cluster of 

organizer cells can influence the spatial arrangement or differentiation of surrounding 

cells. While the incorporation of GNNs into organoid simulations is still largely 

theoretical, the concept is supported by the versatility of the GNN framework: it can 

infer general cell interaction rules from data without prior knowledge of the 

underlying signaling pathways [57]. By ensuring that local neighbor effects are 

learned from real data, GNN-augmented simulations could achieve more realistic 

collective behavior than using physics-based rules alone. 

​

Limitations and Outlook 

It is important to acknowledge the current limitations in 3D organoid modeling with 

AI. First, the use of AI for generating de novo 3D morphogenesis is still in its infancy. 

Most AI applications in biology have focused on 2D images or sequence data; 

applying AI to drive 3D shape formation (as in growing an organoid purely in silico) 

faces challenges due to the complexity of spatial data and the lack of large training 

datasets [58]. In other words, AI is rarely used directly to create novel 3D 

morphogenetic predictions today – this is a frontier that demands new approaches 

and substantially more data.  

Second, there is a paucity of high-resolution 3D data at single-cell resolution to 

inform and validate these models. Many studies still rely on endpoint measurements 

of organoid size or gene expression, or on 2D cross-sections, which fail to capture 

the full 3D cellular architecture [59]. The scarcity of volumetric, single-cell-resolved 

 

 

 



datasets means that models might oversimplify cell–cell interactions or miss subtle 

phenotypic heterogeneity. Advances in light-sheet microscopy and cleared-tissue 

imaging are starting to fill this gap, but data volume and analysis remain bottlenecks.  

Third, validation of simulation results is difficult without robust biomarkers and 

standardized metrics. For example, if a model predicts a certain spatial pattern of 

differentiation inside an organoid, do we have validated biomarkers or tracers to 

detect that pattern in real experiments? The field currently lacks universally accepted 

quantitative benchmarks for organoid morphology beyond generic ones (size, 

circularity, histology). Developing validation biomarkers and assays (such as specific 

immunostains for predicted cell states or functional readouts like calcium oscillation 

patterns for cardiomyocytes) is crucial to test model predictions. Without such 

benchmarks, it’s hard to say whether a given simulation is “correct” or biologically 

relevant. In summary, 3D organoid modeling requires a hybrid approach that 

combines the strengths of AI and traditional physics-based methods. Neither 

approach alone is sufficient: purely data-driven AI might not capture physical 

constraints (like diffusion limits or mechanics), whereas purely mechanistic models 

may not fully leverage complex datasets or uncover hidden patterns. A synergy of 

the two can compensate for each other’s weaknesses – for instance, AI can rapidly 

optimize parameters or suggest network interactions, while mechanistic models 

ensure adherence to biophysical laws. The consensus emerging in this 

interdisciplinary field is that we need to integrate AI with physical and mechanical 

modeling to realistically simulate organoids. This could mean AI-derived rules 

plugged into agent-based simulations, or simulators generating synthetic data for 

training AI models – likely both in iterative cycles. Finally, it’s worth noting that the 
 

 

 



concepts in 3D organoid modeling are influencing other domains of biology as well. 

Plant biology is seeing efforts to model 3D development of structures like root 

systems and shoot apical meristems. Here, researchers combine biomechanics (cell 

wall expansion, turgor pressure) with gene-regulatory network models to simulate 

patterning in a growing root or the phyllotaxis in a shoot. While these plant models 

don’t yet heavily use AI, the frameworks being developed for organoids could 

conceivably be applied (for example, using machine learning to optimize a plant root 

growth model against observed root architectures). Likewise, in microbiology, 

agent-based modeling has been used for years to simulate bacterial colony growth – 

for instance, BacSim [60] was an early individual-based model capturing how E. coli 

cells grow and compete in a colony. Going forward, modern AI techniques like GNNs 

could enhance bacterial colony simulations by learning interaction rules between 

bacteria or predicting colony morphologies under various conditions (nutrient levels, 

agar stiffness, etc.). These examples in plants and microbes echo the theme that 

understanding complex 3D biological phenomena benefits from hybrid modeling. In 

all cases – whether organoids, plant meristems, or bacterial biofilms – the integration 

of AI with biophysical simulations offers a promising route to unravel emergent 

behaviors in three dimensions. 

  

 

 

Organ Integration  

Functional architecture is a way of organizing and modeling organs and tissues. It 

describes a set of system functions, their interactions and interrelations, and how 
 

 

 



they are implemented in the system components. They transmit signals, coordinate 

processes, and exchange substances. 

  

This paper will consider an approach to the virtual integration of tissues and organs 

in order to create functional organs using AI modeling. This paper also considers AI 

systems and simulators (BioDynaMo, OpenCMISS, DeepCell) to link organelle data 

with the functioning of the organs as a whole [61]. For a complete demonstration, 

three organs were chosen: the liver, heart, and brain. 

  

As input, organoid components characteristic of each of the organs are used. For the 

liver (hepatoid organoids): organoids are assembled from the main parenchymal 

cells of the liver and with the help of auxiliary cells such as vascular endothelial cells 

(form the vascular network) and cholangiocytes (epithelial cells of the bile ducts). For 

the heart (cardioid organoids): cardiomyocytes (contractile muscle cells) and 

vascular endothelial cells. Cardioids are 3D modules of the heart for the brain, 

self-organizing from pluripotent cells and their derivatives [66]. For the brain 

(cerebroid organoids). Cerebroid organoids are 3D structures derived from 

pluripotent stem cells that resemble the developing human brain. These organoids 

contain types of nerve cells such as neurons, astrocytes (a type of cell that supports 

neurons), microglia (the brain's innate immune cells), and oligodendrocytes. 

  

Organoid-Based Brain Modeling 

  

 

 

 



Modeling neural structures. Cerebral organoids (3D brain organoids) reproduce 

various aspects of human brain function, including neurogenesis and cortical areas. 

Using AI and simulations, researchers are trying to recreate the functional 

architecture of the brain based on data from brain organoids. One suitable AI tool is 

BioDynaMo [61,63]. For example, a new computer model of the development and 

growth of neurons in our brain was built in the Journal of Mathematical Biology 2024 

[63]. The simulations used neurons in the hippocampus, a critical brain region 

responsible for memory storage. The research team used a method called 

“approximate Bayesian inference” (ABS) that successfully simulated the growth 

patterns of real brain neurons [63]. This shows that such AI tools are able to simulate 

neurogenesis and the network of connections in mini-brains, which in turn can help 

understand brain development and various neuron-related diseases. Analysis of 

images and signals from brain organoids[63]. Often, the analysis of large and 

complex data sets taken from organoids can be ineffective and corrupted. Modern AI 

methods offer a promising solution for efficient information extraction, making a 

forecast based on various types of data. In particular, algorithms based on 

convolutional neural networks are able to segment the nucleus and cells in 3D 

images of organelles, tracking their growth and changes. For example, the DeepCell 

system was developed so that automatic recognition of microscopic images of cells 

completely coincides with the segmentation of human tissues [61]. AI tools such as 

DeepCell allow you to accurately analyze the architecture and composition of the 

mini-brain, tracking the dynamics of its further changes [61]. 

  

 

 

 



Case study: In the Journal of Mathematical Biology 2024, scientists combined the 

BioDynaMo simulator with experimental data on the growth of neurons from 

organoids [63]. As a result, the simulation reliably reproduced the branching of 

hippocampal neurons, similar to in vitro observations [63]. This study shows that the 

combination of realistic modeling and AI optimization helps to create a functional 

architecture of a part of the brain, in other words, a digital analogue of the neural 

network of the organoid, which in turn opens up innovations to the possibility of 

virtual testing of hypotheses in the field of neuroscience, without direct experiments 

with tissues, which is very important. 

  

Modeling the heart based on organoids 

  

The heart is an organ with a pronounced multi-scale nature, pumping blood 

throughout the body. The heart maintains blood circulation and works as a pump, 

thereby electrical impulses at the level of ion channels cause cell contraction for this 

function. To reproduce such a functional architecture, computed modules are 

required. One such tool is the OpenCMISS library [64] - it stores a large part of the 

information on multiphysics modeling in biomedicine. OpenCMISS was used to build 

three-dimensional models of the heart, where cellular electrophysiological 

parameters are integrated into the model of tissue and ventricles [64]. Such 

simulations help to predict the propagation of waves and contraction of the heart in 

norm and pathology. 

  

 

 

 



Scientists have collected a library of 230 different cardioids of geometric 

configurations (rectangles with different sides of the ratios, circles of different 

diameters, etc.) [66]. Using methods called "clustering and nonlinear dimensionality 

reduction", the organoids were immediately grouped by similarity [66]. As it turned 

out, geometry significantly affected the function. Machine learning made it possible 

to identify variables and determine the optimal forms of the organoid to achieve the 

specified properties [66]. Thus, AI can help with the creation of a mini heart with the 

desired functionality and architecture. An example of AI in cardiology is the Living 

Heart project [61]. In this project, the model solves 30 million equations in a real 

anatomical frame of the heart and can predict any changes. In subsequent works, 

this work is supplemented by AI modules so that it is possible to use clinical data of 

ECG and MRI of the heart of patients in order to personalize the simulation [61]. In 

general, the modern strategy has two complementary lines: 1) Physically based 

simulators [64], 2) AI analysis of cardioid data [66]. Such a combination will help to 

accurately create a "virtual heart" on which in the future it will be possible to try 

various drugs and treatments without risking the patient's health. 

  

Liver modeling based on organoids 

Design of a functional analog of the liver considering processors such as: blood flow 

in sinusoids, metabolite transport and cellular signaling networks of hepatocytes. In 

the work npj Digital Medicine, 2024, a model of a virtual human liver lobule is 

provided [65]. The model considers metabolic zoning, distinguishing enzyme 

activities between the periphery and the center of the lobule, which is very important 

 

 

 



[65]. Thanks to this, the simulator was able to predict the zonal nature of drug 

toxicity, consistent with clinical observations. This is a kind of "digital twin" showing 

personalized damage in different patients at a given dose of the drug [65]. Now they 

have begun to try to create 3D liver models based on medical images, where each 

lobule is described by a set of diffusion reaction equations. Thus, computer 

simulators of the liver allow you to create a functional architecture of the organ [65]. 

  

AI for liver organoid analysis 

There is a developed model DILITracer, which uses a convolutional transformer 

trained on 700 thousand cell images, to analyze liver organoids [67]. 

  

Organ on a chip 

The liver very rarely acts in isolation, it is most often connected to other organs. 

Modern approaches try to combine organoids of different types into multi-organ chips 

and use AI to analyze interactions [61]. An example of a study is the work of Nature 

Communications 2022 [68]. In this study, a liver organoid on a chip was exposed to 

an anti-cancer drug, while simultaneously observing its effect on heart cells. Thus, 

thanks to the data, it was possible to build a model of the liver-heart connection. 

  

Limitations of existing approaches 

Lack and quality of data. In order to use AI modeling, a lot of extensive and reliable 

experimental data is required. But obtaining such data for organoids is very difficult 

due to biological variability [61,66]. Even with the same protocol, two different 

 

 

 



organelles can differ greatly in composition and architecture. In addition, many 

processes are simply difficult to observe since datasets are simply not available [61]. 

  

Ethical and methodological issues. The use of AI in biology and treatment often 

prompts the question: can we fully trust the model when making decisions, especially 

when it comes to a clinic [61]. Full certification of models is needed, while the area is 

practically not formalized by law [61]. 

  

Summary  

AI can effectively model the functional architecture of organs such as the liver 

[65,67], heart [61,64,66], and brain [61,63] based on organoid components. 

However, the reliability and clinical applicability of such modules are entirely 

dependent on careful validation [61]. Without proper validation, these modules 

remain limited in their exploration and predictions. 

  

Virtual Organism (Animal cell) 

Currently, one of the most promising areas is the creation of virtual organisms. 

These are full-fledged modules that recreate the interactions of various organs and 

systems of the body. These virtually developed modules help to study biological 

processes, test new drugs and medications without harming human health. 

Models of virtual organisms are computer representations of living systems that 

allow you to take into account both physiological and molecular aspects of the 

functioning of the body. Such modules allow you to predict the effectiveness of 
 

 

 



therapy, assess risks and also develop personalized approaches in medicine. Here 

we will consider modern achievements in this field and also limitations. 

  

Input data and models 

In order to assemble an accurate model of a virtual organism that will function 

correctly, you need to collect all the necessary data from various levels of 

organization of biological systems and integrate them [70]. 

  

Models and their applications 

  

HumMod- models the physiology of the human body. It includes more than 9,000 

variables that describe various physiological processes in the body, allowing you to 

study the effects of diseases on the body and its changes in functioning. 

WholeBodyPK, OpenCOR, SimBody – pharmacokinetics and dynamics [69]. 

  

WholeBodyPK- model, which includes an extended version of the compartmental 

absorption and transit (CAT) model of gastrointestinal absorption, additionally 

including enterohepatic recirculation, analyzes pharmacokinetics, which in turn 

allows tracking how drugs are metabolized in the human body [77]. 

  

OpenCOR is an open source environment for organizing, editing, simulating, and 

analyzing models encoded in CellML format [71]. 

 

 

 

 



 

 

SimBody is a dynamic engine that solves problems that arise in biomedical research. 

It is also used for scientific and engineering modeling of mechanical systems, 

including biomechanical structures [72]. 

  

Possibility of using multi-agent RL to coordinate the behavior of organs 

The use of multi-agent learning methods, which include 3 structured levels: agent 

activation, task planning, and trajectory perception, is a promising direction. For 

example, the study "VIKI-R: Coordinating Embodied Multi-Agent Cooperation via 

Reinforcement Learning" demonstrates how MARL can be used to coordinate the 

actions of complex systems [73]. 

  

Detoxification 

 

The kidneys and liver are among the most important parts of the body for 

detoxification. With a decrease in kidney function, the liver is damaged. Because of 

 

 

 



this, modeling the interactions between the kidney and liver is important. Research 

shows that the gut microbiota and its metabolites can influence kidney and liver 

health [74,76]. 

  

Neurohumoral Loops 

 

The microbiota-gut-brain axis describes the interactions between the gut and the 

brain through neural, immune, and endocrine pathways. Modeling this axis allows us 

to study microbial metabolites, immune responses, and neural activity, providing 

valuable insights into the communication between the gut and the brain [75]. 

  

Immune-Liver-Tumor systems 

 

Modeling the interactions between the immune system, liver, and tumors is important 

for understanding cancer better and developing treatments for it. Research shows 

that the interactions between these systems can significantly affect the effectiveness 

of therapy [78]. 

  

Limitations 

  

Lack of datasets: The lack of comprehensive data on various parts of human and 

other organisms' physiology hinders accurate modeling [70].  

 

 

 



The difficulty of simulating chronic processes: Modeling long-term chronic diseases 

such as cancer or diabetes is particularly challenging because these processes 

develop gradually and can extend over time, and their impact on the body can 

manifest itself at different levels. This requires the creation of more complex and 

adaptive models that can analyze long-term changes in the body. 

 

 

 

(2) Virtual Plant Cell 

Architecture and Simulation 

Callus Induction and Differentiation Modeling 

The induction of totipotent callus represents a uniquely plant‑specific route to 

pluripotency, in which fully differentiated somatic cells are experimentally 

reprogrammed to regain a proliferative, undifferentiated state with the capacity to 

regenerate entire organs or even whole plants. This transformation is mediated 

primarily by the interplay between auxin and cytokinin, which function not simply as 

mitogenic signals but as master regulators of developmental reprogramming, 

controlling cell identity, chromatin accessibility, and spatial polarity establishment 

[81]. Auxin perception via TIR1/AFB-AUX/IAA-ARF signaling modules initiates 

transcriptional programs that destabilize differentiated cell states, promote cell cycle 

re‑entry, and establish polarity cues, while cytokinin perception through CRE1/AHK 
 

 

 



histidine kinase receptors and type‑B ARR transcription factors stimulates 

meristematic cell proliferation and patterning. The relative auxin‑to‑cytokinin ratio 

operates as a developmental bifurcation parameter: elevated auxin favors 

root‑meristem‑like identity, whereas elevated cytokinin biases toward shoot meristem 

specification. In contrast to mammalian systems, where pluripotency arises 

intrinsically during early embryogenesis, plant totipotency is not a default 

developmental state but rather an induced condition, achieved through exogenous 

hormonal regimes that reactivate latent morphogenetic programs otherwise 

inaccessible in differentiated tissues. This biochemical reprogramming is 

underpinned by genome‑wide transcriptional rewiring, including the activation of 

pluripotency‑associated transcription factors (e.g., WUSCHEL, BABY BOOM), 

epigenetic remodeling such as histone acetylation and DNA demethylation, and the 

reorganization of intercellular signaling networks, including plasmodesmatal 

transport and hormonal flux redistribution. Together, these molecular and cellular 

processes collectively reinstate developmental plasticity, rendering the callus 

competent to initiate organogenesis or somatic embryogenesis under appropriate 

inductive cues [81]. 

Hormonal Control as a Computational Problem 

Auxin perception through the TIR1/AFB–AUX/IAA–ARF signaling cascade 

destabilizes repressors of auxin-responsive genes, thereby initiating transcriptional 

programs that promote cell cycle re‑entry, dedifferentiation, and the establishment of 

new polarity axes [81]. Cytokinin is perceived via CRE1/AHK histidine kinase 

 

 

 



receptors, which activate type‑B ARR transcription factors to stimulate meristematic 

cell proliferation, regulate organ boundary formation, and maintain stem cell activity 

[81]. The interplay between these pathways is not merely additive but functions as a 

developmental bifurcation system in which the auxin‑to‑cytokinin ratio governs 

trajectory selection: elevated auxin biases callus differentiation toward 

root‑meristem‑like states, whereas elevated cytokinin promotes shoot meristem 

specification [79,81]. 

From a computational perspective, such ratio‑dependent fate decisions can be 

formalized as a multi‑stable dynamical system in which hormone concentrations act 

as control parameters [79]. In this framework, auxin and cytokinin distributions form 

spatially heterogeneous fields shaped by active transport (e.g., PIN‑mediated auxin 

efflux), passive diffusion, and localized biosynthesis. The resulting gradients 

establish positional information that is interpreted by cells to determine 

developmental outcomes. Multi‑scale models, such as those described by Band et al. 

[79], capture this coupling between molecular signaling and tissue‑level geometry, 

linking intracellular regulatory states to emergent organogenic patterns. These 

models are particularly relevant for callus systems, where auxin/cytokinin feedback 

loops and spatial transport processes jointly define the accessible differentiation 

trajectories. 

Trajectory Inference in Plant Systems 

Simulating callus differentiation in silico requires reconstructing developmental 

trajectories from high-dimensional single-cell transcriptomic profiles, while explicitly 

 

 

 



integrating hormone distribution patterns as dynamic covariates. Unlike in 

mammalian models, where trajectory inference can often proceed without spatial 

constraints, plant systems demand the incorporation of spatial hormone gradients 

and the mechanical context imposed by rigid cell walls. This constraint fundamentally 

alters both the computational representation of developmental state spaces and the 

mathematical modeling of state transitions [79,82]. 

In plant-specific adaptations, pseudotemporal trajectory mapping must be extended 

to account for directional auxin fluxes, driven by polarized transport through 

PIN-FORMED (PIN) efflux carriers, and cytokinin redistribution through vascular 

networks such as phloem and xylem conduits. These transport processes create 

persistent morphogen fields whose local maxima and minima act as positional cues 

for cell fate transitions. Multi-scale models integrate these spatial gradients from the 

subcellular scale (PIN localization) to tissue-scale vascular architecture, enabling a 

quantitative link between hormone topology and differentiation outcomes [79]. 

Plant single-cell transcriptomic datasets, such as those collated in the Plant Single 

Cell Atlas, provide the necessary resolution to couple gene expression dynamics 

with hormone signaling domains [82]. By embedding these profiles in 

low-dimensional pseudotemporal manifolds, via methods such as Monocle or 

diffusion pseudotime, while annotating each cell with local hormone concentrations, 

it becomes possible to predict divergence points where callus cells commit toward 

root‑ or shoot‑like lineages. This integration produces not just lineage graphs but 

spatially anchored fate maps, in which each branch point is contextualized by the 

surrounding morphogen landscape [82]. 
 

 

 



Frameworks like VirtualRoot operationalize this integration by simulating auxin and 

cytokinin fields under realistic transport constraints, providing in silico morphogen 

distributions that can be aligned with experimental single-cell trajectories. Such 

models can thereby test whether predicted branch points coincide with 

experimentally observed fate transitions, allowing iterative refinement of both 

transport parameters and trajectory inference algorithms [79]. This convergence of 

spatial hormone modeling with high-resolution transcriptomic pseudotime 

reconstruction offers a pathway to predictive, mechanistically grounded simulations 

of plant callus differentiation that are directly translatable to experimental 

regeneration systems [79,82]. 

Graph Neural Networks for Fixed-Topology Systems 

In multicellular plant tissues, the spatial arrangement of cells is constrained by the 

rigid extracellular matrix and stabilized by cell wall connections, resulting in a 

relatively immutable, planar lattice of cell-cell contacts. This structural immobility, 

coupled with symplastic connectivity through plasmodesmata, defines a 

fixed‑topology communication network that lends itself naturally to graph‑based 

computational formalisms [80]. In such a framework, each cell is represented as a 

discrete node characterized by multi‑modal feature vectors encompassing its 

transcriptomic state, local morphogen profile, mechanical stress parameters, and 

positional metadata. Edges encode stable, anatomically defined adjacency relations, 

which inherently capture both physical proximity and the potential for direct 

molecular exchange. 

 

 

 



Graph Neural Networks (GNNs) exploit this representation by performing iterative 

neighborhood aggregation, whereby each node updates its state as a function of 

both its intrinsic features and the aggregated signals from its immediate neighbors. 

In plant developmental contexts, this enables the emergence of biologically 

interpretable patterns such as localized auxin enrichment zones, which frequently 

coincide with pre‑organogenic centers, and cytokinin depletion domains that are 

associated with root‑like differentiation foci [80]. Unlike statistical correlation models, 

which treat each cell as an independent observation, GNNs preserve the explicit 

spatial dependencies encoded in tissue topology, allowing predictions to account for 

the positional constraints of plant morphogenesis. 

Recent methodological advances integrate spatial transcriptomics with GNN‑based 

architectures to directly couple molecular state variation with tissue geometry. These 

models leverage high‑resolution single‑cell or subcellular transcriptomic maps, 

aligning them with reconstructed tissue graphs to infer context‑dependent cell fate 

trajectories. The fixed‑topology assumption simplifies graph construction, enabling 

stable node–edge mappings that remain valid across developmental timepoints. In 

the context of callus differentiation, such models can resolve fine‑scale fate 

specification domains, detect shifts in hormone‑driven patterning boundaries, and 

predict lineage commitment events with greater spatial fidelity than non‑graph‑based 

approaches. This integration of spatial omics data with GNN‑driven inference thus 

provides a powerful computational paradigm for mechanistically grounded modeling 

of plant tissue differentiation under experimentally controlled hormonal regimes [80]. 

Rule-Based Hormone Diffusion Models 
 

 

 



Rule‑based simulation offers a mechanistically interpretable approach to modeling 

hormone transport during callus differentiation, formalizing auxin and cytokinin 

dynamics based on transport laws derived from empirical observations. In such 

models, auxin movement is characterized by passive diffusion across cell walls and 

active efflux via polarized PIN‑FORMED (PIN) proteins, whose localization responds 

to local auxin flux, establishing a positive feedback mechanism known as 

canalization. These rules produce emergent patterns where auxin flux becomes 

self-reinforcing along discrete strand-like pathways, consistent with vascular strand 

formation during organogenesis [84]. 

Similarly, cytokinin dynamics can be encoded through rules governing synthesis, 

diffusion, degradation, and inhibitory cross-regulation, allowing the model to 

reproduce threshold-mediated suppression of proliferative signaling within callus 

tissues. When cytokinin concentration surpasses specified thresholds, the model 

applies regulatory feedback to modulate cell division rates and tissue expansion, 

emulating observed inhibitory effects on undifferentiated growth. 

Crucially, rule-based models support hybridization with machine learning frameworks 

to form physics-informed neural networks. In such architectures, the rule-based 

component enforces physically plausible hormone transport dynamics, while a neural 

network component ingests such additional data as gene expression profiles, 

mechanical stress features, or cell shape metrics to adaptively refine spatial 

hormone distribution and fate prediction performance. 

 

 

 



For example, simplified lattice-based auxin transport models, parameterized by cell 

geometry and PIN polarity rules, can be embedded within GNN architectures: nodes 

represent cells, edges denote adjacency, and rules dictate local hormone updates. 

The neural component updates latent cell states conditioned on rule-based hormone 

patterns, enabling simulations in which experimentally tunable parameters, like PIN 

localization bias or degradation rates, are modulated to explore alternative 

differentiation outcomes. This synergy preserves interpretability while enhancing 

predictive flexibility. 

Generative Modeling for Hormone Perturbation 

Generative neural network frameworks, such as scGen, can be tailored to plant 

single‑cell datasets to predict transcriptional responses to hormone perturbations 

without direct experimental measurements for each condition. In this approach, a 

model is trained to capture latent transformations between baseline (pre‑treatment) 

and perturbed (post‑treatment) cellular states, using single‑cell RNA‑seq data as 

input. By embedding cells into a shared latent space, the model infers a “perturbation 

vector” that encodes the transcriptional shift induced by specific hormone regimes. 

For instance, in Arabidopsis thaliana root callus differentiation, transcriptomic profiles 

under varied auxin/cytokinin ratios provide paired datasets from which scGen can 

learn both hormone‑specific and generalizable transcriptional transitions [83]. Once 

trained, the model can apply these learned perturbation vectors to unseen cell 

populations, effectively generating in silico predictions for novel hormone 

combinations not present in the training set. 

 

 

 



This capability is particularly valuable for auxin/cytokinin optimization in regeneration 

protocols. Instead of exhaustively testing every hormone ratio experimentally, the 

trained generative model can simulate hypothetical treatments, predict 

lineage‑specific transcriptional trajectories, and rank hormone cocktails for their 

likelihood to induce desired tissue fates (e.g., shoot meristem specification vs. root 

identity). Importantly, the model output can be cross‑referenced with known 

transcriptional markers from datasets such as Zhang et al. (2019), which provide 

high‑resolution single‑cell maps of Arabidopsis root developmental stages [83]. 

Such in silico screening could substantially reduce experimental trial‑and‑error in 

plant biotechnology by narrowing down candidate hormone regimes before wet‑lab 

validation. In agricultural contexts, this approach could accelerate regeneration 

system design for species with recalcitrant tissue culture responses, improving both 

efficiency and reproducibility. 

Reinforcement Learning for Sequential Induction Strategies 

Sequential optimization of plant regeneration protocols can be naturally formulated 

as a Markov Decision Process (MDP), where each state corresponds to the 

multidimensional cellular context defined by its transcriptomic signature and local 

hormonal environment, and each action represents a discrete modification to 

auxin/cytokinin concentrations or other culture parameters (e.g., photoperiod, 

nutrient composition). The reward is quantified as the proximity of the resulting 

cellular state to a predefined target fate, such as shoot meristem initiation or root 

primordium formation. 

 

 

 



This conceptual framing draws on the methodology established by Sootla et al. 

(2013), who demonstrated that reinforcement learning (RL) algorithms can effectively 

control genetic toggle‑switch networks without explicit mechanistic equations [85]. In 

their work, fitted Q‑iteration was used to identify optimal sequences of control inputs 

that transition the system between distinct stable states, even under stochastic 

fluctuations. Translating this approach to plant systems, RL can be deployed to 

iteratively discover hormone application schedules that drive callus populations 

toward desired differentiation outcomes, guided only by empirical feedback from 

model predictions or experimental readouts [85]. 

Such an RL‑based framework offers several advantages over traditional static 

hormone‑ratio experiments. First, it enables adaptive control, where hormonal inputs 

are dynamically adjusted in response to intermediate cellular states rather than being 

fixed a priori. Second, it supports multi‑step intervention planning, capturing the 

temporal dependencies between early dedifferentiation cues and later organogenic 

commitments. Finally, by training on in silico callus differentiation models, RL agents 

can pre‑screen complex induction strategies before costly wet‑lab validation, thereby 

reducing experimental burden and accelerating protocol optimization. 

In this paradigm, the integration of RL with spatial‑temporal hormone transport 

simulations and single‑cell resolution transcriptomic mapping holds the potential to 

transform plant tissue engineering from a largely empirical discipline into a 

quantitatively predictive science [85]. 

Challenges and Data Limitations 

 

 

 



A key constraint in modeling plant callus induction lies in the limited availability of 

systematically annotated single‑cell datasets under controlled hormonal 

perturbations. While comprehensive platforms such as CellSTAR integrate 

multi‑species transcriptomic resources and advanced annotation pipelines, most 

plant datasets remain sparse in both temporal resolution and experimental diversity 

[82]. This limits the capacity of computational frameworks to reconstruct accurate 

developmental trajectories, particularly when simulating differentiation outcomes 

across variable auxin/cytokinin regimes. 

Moreover, multi‑factorial environmental influences, including light spectrum and 

intensity, mechanical perturbation, and nutrient microgradients, interact non‑linearly 

with hormone signaling networks. These interactions can reshape morphogen 

distribution patterns, alter transporter localization, and modulate receptor sensitivity, 

thereby introducing confounding variability not captured in standard single‑cell 

profiling workflows. The lack of concurrent spatial and environmental metadata in 

most public datasets further complicates mechanistic interpretation. 

A fundamental distinction from mammalian stem cell systems exacerbates this 

challenge: plants do not possess a universal, intrinsic pluripotent “ground state.” 

Instead, totipotency emerges only under context‑specific hormonal, metabolic, and 

biomechanical conditions. Consequently, models trained on a given tissue type or 

genotype often fail to generalize to other developmental origins or species with 

distinct hormonal sensitivities. This necessitates frequent retraining or domain 

adaptation of predictive algorithms when extending to new plant systems. 

 

 

 



Finally, without iterative integration of experimental design and computational 

modeling, even advanced machine learning pipelines risk overfitting to narrow data 

regimes. Active learning strategies, whereby models identify the most informative 

perturbations for subsequent experiments, could help overcome these constraints. 

However, achieving robust generalization will ultimately depend on expanding the 

diversity, resolution, and contextual richness of plant single‑cell datasets [82]. 

In sum, simulating callus induction and differentiation is not merely a statistical 

prediction task but a multi-scale integration problem spanning transcriptional 

regulation, hormone transport physics, and spatial tissue architecture. Combining 

GNN-based spatial reasoning, rule-based morphogen diffusion, and VirtualRoot-like 

organogenic simulation offers the most promising route toward predictive, 

mechanistically grounded in silico plant morphogenesis. Such models could 

accelerate the rational design of plant regeneration protocols, enabling 

high-throughput in silico testing of agricultural biotechnology interventions. 

Spatial and Vascular Patterning 

The spatial and vascular organization of plant tissues is one of the most fundamental 

determinants of plant form and function. Across the plant kingdom, the precise 

arrangement of xylem, phloem, and their cambial progenitors governs not only the 

mechanical stability of organs but also the efficiency of long‑distance transport for 

water, nutrients, and signaling molecules. This arrangement is not fixed; it emerges 

dynamically from a complex interplay between genetic programs, hormone 

gradients, and biomechanical forces exerted by surrounding cells. In roots and 

 

 

 



leaves, vascular patterning underpins the establishment of organ polarity, the 

partitioning of developmental zones, and the plant’s capacity to adapt to 

environmental pressures. 

Understanding this organization in full resolution has been a longstanding challenge 

in plant biology. Historically, anatomical studies provided structural descriptions, 

while molecular analyses offered gene expression profiles, yet these two views 

rarely converged at cellular resolution. Classical histology preserved the architecture 

but lacked comprehensive molecular readouts. Conversely, bulk and even single‑cell 

transcriptomics revealed the molecular identity of cells but erased their positional 

context upon tissue dissociation. This loss of spatial information meant that gene 

expression could be described, but the positional logic, exactly the way expression 

patterns align with morphogenetic processes, remained obscured. 

The advent of spatial transcriptomics has changed this paradigm. By capturing in situ 

gene expression while preserving the native geometry of tissues, spatial methods 

restore the missing positional context. In Arabidopsis thaliana, high‑resolution spatial 

maps have revealed sharply delineated developmental domains: the vascular 

cambium, the differentiating procambium, mature xylem vessels, and phloem sieve 

elements [86]. These maps do more than localize known cell types, uncovering 

fine‑scale developmental gradients, such as the gradual auxin‑mediated transition 

from procambial cells into lignified xylem. The ability to anchor transcriptional states 

in their native topography has opened the door to a mechanistic understanding of 

how morphogen gradients and positional cues orchestrate vascular differentiation. 

 

 

 



Yet, even the most detailed spatial datasets face an inherent limitation: they are often 

generated from selected tissue sections, representing snapshots in time and space. 

To bridge the gap between dissociated high‑throughput datasets and these spatial 

snapshots, AI‑driven computational frameworks have emerged as transformative 

tools. 

Tangram [87], a probabilistic deep learning algorithm, integrates scRNA‑seq and 

spatial transcriptomics by projecting dissociated transcriptomic profiles back into 

their most probable spatial coordinates. Unlike simple alignment methods, Tangram 

reconstructs continuous developmental trajectories, preserving subtle expression 

gradients that would otherwise be lost. In the context of vascular patterning, Tangram 

has successfully mapped auxin‑responsive procambial populations into continuous 

radial and longitudinal gradients, revealing the molecular progression toward mature 

xylem vessels. 

SpaGCN [88] takes this integration further by embedding both transcriptional 

similarity and spatial adjacency into a graph convolutional network. This allows not 

only the recovery of known domains but also the discovery of previously 

uncharacterized transcriptional territories, including nested subdomains within 

mesophyll layers and bundle sheath cells in leaves. Such modeling preserves the 

three‑dimensional anatomical precision required for Virtual Plant Cell simulations, 

ensuring that gene expression is interpreted in the full context of its histological 

surroundings. 

 

 

 



These AI‑powered mappings are not merely descriptive; they form the computational 

backbone for predictive modeling of morphogenesis. Platforms such as TissueMaker 

extend spatial reconstructions into simulations of vascular differentiation under 

hormonal perturbations. For instance, by incorporating models of auxin transport and 

cytokinin signaling, TissueMaker can predict how vascular topology shifts when 

auxin flux is inhibited, or how cambial proliferation expands in response to elevated 

cytokinin. These simulations can be run across developmental time series, allowing 

researchers to forecast organ‑level outcomes under specific genetic or 

environmental modifications. 

Such predictive capacity is critical for the Virtual Plant Cell framework. By embedding 

spatial and vascular patterning data into a computationally manipulable 3D scaffold, 

the Virtual Plant Cell becomes a testbed for hypothesis‑driven experimentation. 

Researchers can virtually introduce mutations, simulate drought‑induced hormonal 

rebalancing, or test hypothetical transcription factor knockouts — all while observing 

their predicted effects on vascular architecture. This shifts the role of computational 

plant biology from passive reconstruction toward active experimental design. 

Ultimately, the integration of high‑resolution spatial transcriptomics, AI‑driven 

mapping, and predictive morphogen modeling transforms our capacity to understand 

and manipulate plant development. In this integrated view, vascular patterning is no 

longer just an anatomical outcome: it is a dynamic, data‑driven system that can be 

probed, perturbed, and even redesigned in silico. For the Virtual Plant Cell, this 

means the possibility of generating not just a digital replica of plant anatomy, but a 

 

 

 



living, evolving blueprint that responds to genetic, hormonal, and environmental 

changes in real time. 

Simulating Agrochemical Responses 

Understanding the physiological impact of agrochemicals at the cellular and tissue 

levels is critical for predicting plant responses under agricultural interventions. Two 

key aspects, namely herbicide toxicity and stomatal regulation, represent important 

targets for computational simulation, as they directly influence crop viability, 

photosynthetic efficiency, and water use under field conditions. 

Herbicide Toxicity Prediction 

Herbicides are designed to disrupt specific metabolic or signaling pathways in plants, 

yet their off‑target effects and environmental persistence can lead to substantial 

ecological risks [79]. To address this, deep learning frameworks such as DeepTox 

have been applied to high‑dimensional chemical structure-activity datasets, including 

ChEMBL and HerbicideDB, enabling accurate prediction of molecular toxicity 

profiles. These models utilize molecular fingerprints and graph‑based 

representations to classify compounds by phytotoxicity risk and to identify 

substructures associated with elevated hazard potential [81]. By simulating 

dose-response curves and extrapolating potential synergistic effects, such predictive 

systems provide a virtual screening layer before field trials. 

Stomatal Regulation Modeling 

 

 

 



The regulation of stomatal aperture is a primary determinant of gas exchange and 

water loss, and is influenced by both endogenous signals (abscisic acid, CO₂ 

concentration) and exogenous chemical stimuli [80]. Certain herbicides and growth 

regulators can trigger stomatal closure or malfunction, leading to reduced 

transpiration and altered photosynthetic performance. Graph neural network (GNN) 

architectures, such as CropNet, integrate chemical features with plant physiological 

data to model stomatal conductance changes in response to agrochemical exposure. 

These hybrid models capture complex non‑linear interactions between chemical 

structure, hormonal signaling, and guard cell ion channel activity, enabling 

quantitative forecasts of stomatal behavior under varying agrochemical treatments. 

Integrated Simulation Pipeline 

In the Virtual Plant Cell framework, these approaches converge into an AI‑driven 

agrochemical response module. Molecular descriptors from ChEMBL and 

HerbicideDB are fed into DeepTox‑like toxicity classifiers, which rank compounds by 

predicted phytotoxic risk. In parallel, CropNet‑style GNN models simulate stomatal 

conductance responses to these compounds, accounting for developmental stage, 

tissue‑specific sensitivity, and environmental conditions. Coupled with organ‑scale 

physiological simulators, this integration enables in silico testing of herbicide 

formulations, guiding the selection of compounds with maximal efficacy and minimal 

physiological disruption. 

Applications and Integration 

 

 

 



The integration of spatial and vascular patterning into whole‑plant modeling 

represents a decisive step toward multiscale virtual plant systems capable of 

predicting development and performance under diverse environmental conditions. By 

providing a high‑fidelity 3D map of tissue organization and vascular topology, spatial 

data serve as the anatomical and functional scaffold upon which dynamic 

physiological simulations can be built [86,87,92]. 

From Tissue Architecture to Whole‑Plant Physiology​

Vascular patterning defines the conduits for water, nutrient, and hormone transport 

throughout the plant. This internal transport network dictates how efficiently a plant 

can redistribute resources in response to developmental needs or environmental 

perturbations. In whole‑plant simulations, these spatially resolved vascular maps 

provide such structural parameters as xylem vessel density, phloem sieve element 

connectivity, and cambial growth potential that determine hydraulic conductance, 

assimilate allocation, and long‑distance signaling [93]. Without this level of detail, 

growth models cannot accurately represent the plant’s capacity for systemic 

adaptation. 

Coupling with Functional‑Structural Plant Models (FSPMs)​

Functional‑structural plant models (FSPMs) simulate the interplay between organ 

development, resource transport, and environmental interactions [93]. By embedding 

AI‑derived vascular maps into FSPMs, it becomes possible to dynamically link local 

tissue differentiation with global physiological outputs. For example, auxin transport 

dynamics modeled at the root tip can influence lateral root initiation patterns, which 

 

 

 



in turn alter whole‑root architecture and water uptake capacity. Similarly, leaf 

vascular density patterns directly modulate transpiration rates and photosynthetic 

efficiency in canopy‑level light distribution models [87,92]. 

Simulating Stress Responses​

Under abiotic stress conditions, like drought, salinity, heat, or nutrient limitation, 

vascular patterning often undergoes profound reorganization. In drought scenarios, 

for instance, simulated auxin and cytokinin rebalancing may lead to increased xylem 

lignification and reduced vessel diameter, adaptations that improve water‑use 

efficiency but limit maximal growth rate [94]. Salt stress simulations may reveal 

altered phloem loading patterns to maintain osmotic balance. Integrating these 

tissue‑level adaptations into whole‑plant models enables prediction of not just 

morphological changes, but also shifts in yield, biomass allocation, and survival 

probability. 

Predictive Breeding and Genetic Design​

The predictive power of this integration extends beyond academic modeling into 

applied plant engineering. By testing virtual genetic modifications (e.g. 

overexpression of cambium‑activating transcription factors or suppression of auxin 

efflux carriers) researchers can forecast how vascular architectures would 

reconfigure and what systemic physiological consequences would follow [86,87]. 

This capability allows breeders and bioengineers to screen candidate modifications 

in silico before committing to time‑ and resource‑intensive wet‑lab validation. 

 

 

 



Toward Real‑Time Growth Simulation​

When coupled with environmental sensing and feedback loops, spatially integrated 

whole‑plant models could support near‑real‑time prediction of plant growth 

trajectories in controlled environments [92,93]. This would enable adaptive 

management strategies in precision agriculture, where irrigation schedules, nutrient 

delivery, or light regimes are dynamically adjusted based on predicted vascular and 

growth responses. In this vision, the Virtual Plant Cell evolves into a Virtual Plant 

System – a multiscale, continuously updated digital twin of the living organism. 

In summary, incorporating spatial and vascular patterning into whole‑plant modeling 

transforms the Virtual Plant Cell from a static anatomical reconstruction into a 

dynamic predictive platform. It links the molecular and tissue‑scale drivers of 

development to organ‑ and plant‑scale performance, enabling unprecedented 

capacity to simulate, forecast, and ultimately design plant growth strategies under 

both optimal and stress‑inducing conditions. 

 

 

 

 

 

(3) Virtual Bacteria Cell 

 

 

 



Virtual Bacterial Cell: Architecture and Simulation 

Creating a virtual model of a bacterium is a unique task that differs from modeling 

eukaryotic cells. Bacteria are able to grow rapidly, exhibit metabolic flexibility, carry 

out horizontal gene transfer, and exhibit complex collective behaviors such as biofilm 

formation and antibiotic resistance. 

The purpose of this section is to describe the architecture of an artificial intelligence 

model that can simulate both the state of a single bacterial cell and the behavior of 

entire populations in response to chemical and genetic stimuli. 

Modeling of genetic regulation and cell state 

A virtual bacterium is based on a model of its internal state, which, like a digital 

eukaryotic cell, is not a static structure, but a dynamic system capable of responding 

to environmental changes. This subsection describes how genomic, transcriptomic, 

and phenotypic data are used to train a model that reproduces the physiological 

properties of a bacterium. 

Data sources: from genomics to phenotype 

Various types of data serve as the basis for modeling. In contrast to the analysis of 

unicellular eukaryotes, bacterial systems are more characterized by massive RNA 

sequencing obtained under various conditions with a lack of nutrients, stress, and 

 

 

 



exposure to antibiotics. These datasets allow us to identify global changes in 

transcription [95]. 

 The central element is the gene regulatory networks (GDS), which have been well 

studied in model organisms such as Escherichia coli and are available in databases 

such as RegulonDB. GRNs are a mechanistic system that links transcription factors 

(TF) to their target genes and determines the regulatory logic of the cell. 

 Of particular importance is the availability of data on antibiotic resistance genes 

(ARG), which are cataloged in databases such as the Comprehensive Database on 

Antibiotic Resistance (CARD). In addition, the results of CRISPR interference 

(CRISPRi) and genome-wide knockout make it possible to directly link the functions 

of genes with phenotypic manifestations, such as survival under drug load 

conditions. 

From data to model: latent space and phenotype prediction 

 Direct use of multidimensional gene expression vectors (covering thousands of 

genes) requires large computing power and is fraught with noise. Therefore, as in 

the case of eukaryotic models, the key step is to reduce dimensionality using 

methods such as variational autoencoders (VAE) [96] or other deep learning 

architectures. These models compress multidimensional expression data into a 

compact latent space, where each point represents a specific physiological or 

metabolic state of the bacterium. The axes of this space often correspond to 

biological processes such as growth rate, stress response, or cell cycle stage [97].

 

 

 



​

​

Pic 1. VAE architecture scheme: The encoder compresses multidimensional expression data in a hidden space, 

and the decoder reconstructs them, which makes it possible to simulate cell states. [98] 

Based on this latent representation, predictive models can be trained. For example, 

a neural network can learn to evaluate phenotypic characteristics, such as the 

minimum inhibitory concentration (MIC) of an antibiotic, based on the position of the 

bacterium in the latent space. In addition, models such as DeepARG apply deep 

learning to genomic sequences to identify resistance genes, which makes it possible 

to enrich the latent space with functional genomic information [99]. 

 

 

 



Modeling of biofilms and colonies 

A realistic virtual cell should be able to dynamically change its internal state. 

Generative models adapted for bacterial systems, such as scGen or CPA 

(Compositional Perturbation Autoencoder), make it possible to model transcriptomic 

responses to various external stimuli [100]. These models are able to predict how the 

gene expression profile will change upon exposure, even if there was no 

corresponding condition in the training dataset [101]. 

 The integration of gene regulatory networks directly into the neural network 

architecture, as in models such as DeepGRN, increases biological plausibility [102]. 

In these implementations, the structure of the neural network reflects known 

regulatory interactions, providing interpretability and allowing you to track 

cause-and-effect relationships within the cell [102]. 

From individual agents to collective dynamics 

To create a fully formed virtual organism, it is necessary to move from modeling 

individual bacterial cells to modeling behavior at the population level. Bacteria exhibit 

collective behaviors such as biofilm formation and spatial colony morphogenesis, 

which are crucial for survival and pathogenicity. This behavior requires modeling 

spatial interactions, sharing metabolic resources, and chemical communication 

between cells[103][104]. 

Agent-based modeling (ABM) 

 

 

 



The main computational basis for population modeling is agent-based modeling. 

Each virtual bacterium created in “Modeling of genetic regulation and cell state” 

functions as an independent agent. Its internal state, represented in a hidden space, 

determines its actions: growth, division, extracellular matrix production or mobility. 

The ABM environment includes a spatial grid for modeling the diffusion of nutrients 

and signaling molecules, as well as interaction rules for determining quorum, 

competition, and horizontal gene transfer. Modeling platforms such as BacSim[8] and 

iDynoMiCS [104] provide ready-made solutions for spatial and mechanistic 

modeling. 

 

Antimicrobial and Chemical Interaction Simulation 

​

Simulating the interaction of a virtual bacterial cell with antimicrobial agents is 

essential to understand and predict bacterial behaviour in various 

microenvironments. This subsection reviews the mechanisms used to simulate 

antibiotic action and to determine the Minimum Inhibitory Concentration (MIC), 

highlighting the important role of AI and relevant datasets in the field.  

 

Antibiotic resistance, or Antimicrobial resistance refers to the ability of a microbe to 

resist the effects of the drugs they have previously been exposed to and it is one of 

the most important modern problems for public health. According to the U.S. Centers 

 

 

 



for Disease Control and Prevention (CDC), antibiotic resistance caused more than 2 

million bacterial infections, 23,000 fatalities, and resulted in annual economic losses 

of 55 billion dollars in the United States. Even though the possibility of bacterias 

developing strong antibiotic resistance was forewarned for years, there were no 

significant interventions concerning this problem and it remains relevant to this day. 

Bioinformatic or computational biology approaches to bacteria and antibiotic 

resistance will play a key role in pushing antibiotic resistance research forward [107].  

 

Modelling the antibiotic action within the virtual bacterial cells involves simulating 

complex molecular and cellular processes that occur in the cell upon exposure to 

various drugs.  

 

According to Butterfield et al. (2012), “The Minimum Inhibitory Concentration (IMC) is 

defined as the lowest or minimum antimicrobial concentration that inhibits visible 

microbial growth in artificial media after a fixed incubation time” [106]. Simulating 

MIC in a virtual bacterial population is helpful for predicting the efficiency of various 

antibiotics against specific strains. This result could be achieved by modeling 

bacterial population growth at different antibiotic concentrations and finding a 

threshold at which the population growth stops.  

 

To improve the accuracy of such simulations,specialized AI models such as 

DeepARG are used: 

●​ DeepARG: ARGs are antibiotic resistance genes that are one of the keys for 

bacterial resistance against antibiotics. DeepARG is a novel instrument that 
 

 

 



uses Deep Learning to enhance the accuracy of simulations and help them 

better predict ARGs [99]. 

 

Relevant datasets: For the training and validation of AI models in the context of 

antimicrobial interaction simulations, as well as to increase the accuracy of these 

models, the following datasets are highly relevant: 

●​ CARD: The Comprehensive Antibiotic Resistance Database is a large, 

peer-reviewed dataset of resistance determinants and associated antibiotics. 

It was organized by the Antibiotic Resistance Oncology (ARO) and 

specialized AMR gene detection algorithms [105]. 

 

Integration of these softwares and the usage of the relevant databases is crucial for 

the success and accuracy of the models simulating bacterias’ interaction with 

antibiotics.  

 

 

 

 

Ecosystem Integration  

Microbiomes, made from various viruses and bacterias, play a key role in human 

health and environmental processes. Our understanding of microbiomes is still 

 

 

 



limited and hindered by their complexity [109]. In order to deepen our knowledge in 

this sphere, Machine Learning and Deep Learning algorithms can be employed to 

process vast amounts of metagenomic, transcriptomic, and proteomic data to identify 

patterns, predict possibilities, and simulate microbiomes. In the context of a virtual 

bacterial cell, this allows for modeling how changes in one bacterial species or 

environmental conditions can impact the functions of the entire microbiome.  

Quorum Sensing (QS) is a process of cell-cell communication that allows bacterias 

to share information about cell density with each other and adjust gene expression 

accordingly. Bacteria synthesize and release signaling molecules, autoinducers, into 

their environment. When the amount of autoinducer molecules reaches a specific 

threshold (indicating a high population density), bacteria activate or deactivate 

specific genes, coordinating population-level responses [108]. 

 

Discussion 

The cross‑kingdom virtual cell framework presented here establishes a unified 

strategy for simulating biological complexity across fundamentally different domains: 

animal, plant, and bacterial systems. This unification is not a superficial conceptual 

exercise but a practical step toward standardizing simulation pipelines that can 

translate computational advances from one kingdom to another. By positioning 

pluripotent iPSCs, totipotent plant callus cells, and programmable bacterial colonies 

 

 

 



as functional analogues, the framework opens a pathway for cross‑application of 

modeling tools, training datasets, and validation strategies [5,6]. 

From a methodological perspective, one of the strengths of this approach lies in its 

transferability. Predictive modeling workflows initially developed for human iPSC 

organoids can be adapted for plant meristem simulations or bacterial biofilm 

dynamics with only domain‑specific modifications. This adaptability reduces the need 

for building entirely new simulation infrastructures for each biological context and 

instead encourages modularity and interoperability. Similar transfer learning 

concepts have been successfully demonstrated in computational genomics and 

spatial transcriptomics alignment, where architectures trained on one dataset could 

be fine‑tuned for related biological questions without full retraining [4]. 

Another critical dimension is the ability to address multi‑scale biological behavior. 

Traditional virtual models often succeed in reproducing either molecular‑scale 

interactions or population‑scale patterns, but rarely both with equal fidelity. By 

combining agent‑based simulation, physics‑informed modeling, and AI‑driven 

generative frameworks, the proposed architecture has the potential to bridge scales 

by linking single‑cell gene expression states to emergent tissue‑ or colony‑level 

behaviors. This approach aligns with the emerging hybrid modeling paradigm that 

couples mechanistic simulation with data‑driven inference to predict developmental 

dynamics and perturbation responses [2]. 

Nevertheless, integration across kingdoms is not without obstacles. Standardization 

of data formats, ontologies, and annotation methods remains a major barrier to 

 

 

 



interoperability. High‑quality volumetric datasets are abundant in human and animal 

single‑cell research but far less developed in plant and microbial contexts [5]. This 

asymmetry risks producing unbalanced predictive capabilities unless data acquisition 

efforts are strategically aligned across domains. Moreover, reliance on AI models 

without sufficient mechanistic grounding can introduce artifacts, namely biological 

predictions that fit the data but fail in the real world. Hybrid approaches, where 

learned statistical patterns are constrained by physical laws and experimentally 

validated mechanistic rules, remain the most robust path forward [1]. 

The implications of this framework extend beyond purely technical benefits. In drug 

discovery, it could facilitate in silico patient‑specific testing that informs trial design 

[7]. In agriculture, it could provide pre‑field digital screening of agrochemicals under 

variable climate and soil scenarios, potentially reducing costly late‑stage failures. In 

microbiology, it could enable early detection of treatment‑resistant microbial 

configurations, including mixed‑species biofilms — one of the most significant 

challenges in clinical microbiology due to their ability to persist on medical devices, 

evade host immune responses, and facilitate horizontal gene transfer between 

pathogens [1]. These communities not only complicate eradication strategies but 

also serve as reservoirs for multi‑drug‑resistant genes that can rapidly disseminate 

across bacterial populations. Embedding biofilm‑specific genomic and metabolic 

signatures into virtual bacterial colony models could enable proactive intervention 

design before resistance phenotypes become clinically entrenched. 

Looking ahead, progress will depend on collaborative infrastructure: shared, 

cross‑kingdom benchmarking datasets; open, extensible simulation toolkits; and 
 

 

 



formal validation protocols that unify in vitro and in silico pipelines. The long‑term 

vision is a network of interoperable virtual cells, spanning animals, plants, and 

bacteria, capable of exchanging simulation components and predictive modules 

much like software libraries in other engineering disciplines. Such a resource would 

transform virtual cells from stand‑alone research artifacts into foundational tools for 

experimental design, policy development, and translational innovation. 

 

Conclusion 

This study advances a unified, cross‑kingdom framework for AI‑driven virtual cell 

modeling, integrating three biologically and functionally distinct yet conceptually 

analogous systems: animal iPSC‑derived organoids, plant callus‑based virtual 

meristems, and bacterial colony‑scale models. By bridging these domains, the 

framework addresses a persistent fragmentation in computational biology, offering a 

scalable architecture capable of simulating complex developmental processes and 

perturbation responses across vastly different biological kingdoms. 

In biomedical research, the integration of AI‑enhanced iPSC models into virtual 

organism pipelines promises to accelerate drug discovery, reduce late‑stage clinical 

failures, and minimize reliance on ethically and economically costly animal testing. In 

agricultural biotechnology, virtual plant cells have the potential to revolutionize 

agrochemical safety assessment by predicting developmental and toxicological 

outcomes before entering labor‑intensive greenhouse and field trials. In microbiology, 

 

 

 



virtual bacterial colonies can become powerful predictive tools for modeling antibiotic 

resistance emergence and optimizing antimicrobial interventions — critical in an era 

where antimicrobial resistance poses a global health emergency. 

The proposed architecture is not merely a conceptual bridge; it is a pragmatic 

blueprint for implementing multi‑scale, hybrid modeling approaches that combine 

physics‑based simulation, agent‑based modeling, and AI‑driven predictive analytics. 

Such convergence enables both the mechanistic fidelity of traditional computational 

biology and the adaptive, data‑driven insight of modern machine learning. While 

challenges remain, most notably in acquiring standardized, high‑resolution datasets 

and ensuring biological plausibility in AI‑generated outputs,the trajectory is clear: 

unified virtual cell systems can become foundational to predictive, reproducible, and 

ethically aligned bioscience. 

Ultimately, the framework presented here positions virtual cell modeling as a 

transformative enabler across medicine, agriculture, and microbiology. By 

establishing a common language and computational infrastructure for these 

domains, it lays the groundwork for a new era of cross‑kingdom virtual biology, one 

in which simulation is not merely a complement to experimentation, but an equal 

partner in discovery and innovation. 
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	Introduction  
	Problem of traditional drug testing 
	Drug development remains a high‑risk, high‑cost endeavor, with attrition rates in clinical trials persistently exceeding 85-90 % across therapeutic areas [7]. In oncology, success rates can be as low as 3-5 %, reflecting poor translatability of preclinical results to human outcomes [7]. Conventional animal models, though historically indispensable, frequently fail to replicate human physiology and disease complexity, leading to inaccurate predictions of efficacy and safety [5]. These translational gaps contribute to 12-15 years of development timelines and costs averaging $2-2.5 billion per approved drug [7]. In addition, regulatory, ethical, and reproducibility concerns are driving the search for alternative models that better capture human biology without relying heavily on in vivo animal studies. 
	Potential of virtual organism models 
	Advances in induced pluripotent stem cells (iPSC) and organoid technologies are redefining the preclinical landscape. Human iPSC‑derived organoids can self-organize into physiologically relevant 3D architectures that mimic native tissue functions, enabling modeling of organ‑level drug responses [6]. This capability supports personalized medicine approaches where patient‑specific cells are used to predict individual drug responses. Parallel developments in AI‑driven virtual modeling, including multi‑omics integration, spatial transcriptomics alignment [4], and in silico patient simulations, are accelerating the design‑build‑test‑learn (DBTL) cycle for therapeutic discovery [2].​Importantly, regulatory shifts such as the FDA Modernization Act 2.0 recognize “new approach methods” (NAMs) as viable alternatives to animal testing, opening a pathway for AI‑enhanced virtual models to play a central role in preclinical decision‑making [7]. 
	From Animal to Non‑Animal: Redefining the Stem Cell Analogy 
	While iPSC and embryonic stem cell (ESC) systems have revolutionized modeling in human and animal biology, analogous regenerative and self‑organizing systems exist in other kingdoms. This work proposes extending the virtual cell framework, which was traditionally centered on animal stem cells, to include plant callus cells and bacterial colonies as functionally analogous platforms. 
	Animal iPSC: capabilities and pipeline 

	iPSCs are pluripotent, capable of differentiating into virtually any somatic lineage. In vitro, they can be directed toward specific tissues or combined into organoids that replicate aspects of organ physiology [6]. These models support drug toxicity screening, disease modeling, and personalized therapy prediction. Integration with AI, spatial transcriptomics, and predictive modeling tools [4] enables simulation of developmental trajectories and response profiling at single‑cell resolution. 
	Why this analogy matters for digital modeling 
	Plant callus cells as functional analogs 

	Plant callus cells are totipotent: any differentiated plant cell can revert to a pluripotent‑like state and regenerate an entire organism under the influence of phytohormones such as auxin and cytokinin. This mirrors the role of morphogen signaling (e.g., BMP4, Activin A) in iPSC reprogramming. As in animal systems, callus formation follows distinct molecular pathways that can be predicted, manipulated, and optimized, making them viable candidates for AI‑driven virtual plant cell modeling. In sum, such models could accelerate agrochemical testing by forecasting toxicity and growth effects prior to greenhouse or field trials. 
	Bacterial cells as self‑organizing, programmable systems 

	Limitations of existing models and the novelty of this work 

	scVI  
	scGen 
	DeepCell 
	Virtual Organism (Animal cell) 
	Architecture and Simulation 
	Callus Induction and Differentiation Modeling 
	Hormonal Control as a Computational Problem 
	Trajectory Inference in Plant Systems 
	Graph Neural Networks for Fixed-Topology Systems 
	Rule-Based Hormone Diffusion Models 
	Generative Modeling for Hormone Perturbation 
	Reinforcement Learning for Sequential Induction Strategies 
	Challenges and Data Limitations 

	Spatial and Vascular Patterning 
	Virtual Bacterial Cell: Architecture and Simulation 
	Creating a virtual model of a bacterium is a unique task that differs from modeling eukaryotic cells. Bacteria are able to grow rapidly, exhibit metabolic flexibility, carry out horizontal gene transfer, and exhibit complex collective behaviors such as biofilm formation and antibiotic resistance. 
	The purpose of this section is to describe the architecture of an artificial intelligence model that can simulate both the state of a single bacterial cell and the behavior of entire populations in response to chemical and genetic stimuli. 
	Modeling of genetic regulation and cell state 
	A virtual bacterium is based on a model of its internal state, which, like a digital eukaryotic cell, is not a static structure, but a dynamic system capable of responding to environmental changes. This subsection describes how genomic, transcriptomic, and phenotypic data are used to train a model that reproduces the physiological properties of a bacterium. 
	Data sources: from genomics to phenotype 

	Various types of data serve as the basis for modeling. In contrast to the analysis of unicellular eukaryotes, bacterial systems are more characterized by massive RNA sequencing obtained under various conditions with a lack of nutrients, stress, and exposure to antibiotics. These datasets allow us to identify global changes in transcription [95]. 
	 The central element is the gene regulatory networks (GDS), which have been well studied in model organisms such as Escherichia coli and are available in databases such as RegulonDB. GRNs are a mechanistic system that links transcription factors (TF) to their target genes and determines the regulatory logic of the cell. 
	 Of particular importance is the availability of data on antibiotic resistance genes (ARG), which are cataloged in databases such as the Comprehensive Database on Antibiotic Resistance (CARD). In addition, the results of CRISPR interference (CRISPRi) and genome-wide knockout make it possible to directly link the functions of genes with phenotypic manifestations, such as survival under drug load conditions. 
	From data to model: latent space and phenotype prediction 

	 Direct use of multidimensional gene expression vectors (covering thousands of genes) requires large computing power and is fraught with noise. Therefore, as in the case of eukaryotic models, the key step is to reduce dimensionality using methods such as variational autoencoders (VAE) [96] or other deep learning architectures. These models compress multidimensional expression data into a compact latent space, where each point represents a specific physiological or metabolic state of the bacterium. The axes of this space often correspond to biological processes such as growth rate, stress response, or cell cycle stage [97].​​Pic 1. VAE architecture scheme: The encoder compresses multidimensional expression data in a hidden space, and the decoder reconstructs them, which makes it possible to simulate cell states. [98] 
	Based on this latent representation, predictive models can be trained. For example, a neural network can learn to evaluate phenotypic characteristics, such as the minimum inhibitory concentration (MIC) of an antibiotic, based on the position of the bacterium in the latent space. In addition, models such as DeepARG apply deep learning to genomic sequences to identify resistance genes, which makes it possible to enrich the latent space with functional genomic information [99]. 
	Modeling of biofilms and colonies 
	A realistic virtual cell should be able to dynamically change its internal state. Generative models adapted for bacterial systems, such as scGen or CPA (Compositional Perturbation Autoencoder), make it possible to model transcriptomic responses to various external stimuli [100]. These models are able to predict how the gene expression profile will change upon exposure, even if there was no corresponding condition in the training dataset [101]. 
	 The integration of gene regulatory networks directly into the neural network architecture, as in models such as DeepGRN, increases biological plausibility [102]. In these implementations, the structure of the neural network reflects known regulatory interactions, providing interpretability and allowing you to track cause-and-effect relationships within the cell [102]. 
	From individual agents to collective dynamics 

	To create a fully formed virtual organism, it is necessary to move from modeling individual bacterial cells to modeling behavior at the population level. Bacteria exhibit collective behaviors such as biofilm formation and spatial colony morphogenesis, which are crucial for survival and pathogenicity. This behavior requires modeling spatial interactions, sharing metabolic resources, and chemical communication between cells[103][104]. 
	Agent-based modeling (ABM) 

	The main computational basis for population modeling is agent-based modeling. Each virtual bacterium created in “Modeling of genetic regulation and cell state” functions as an independent agent. Its internal state, represented in a hidden space, determines its actions: growth, division, extracellular matrix production or mobility. 
	The ABM environment includes a spatial grid for modeling the diffusion of nutrients and signaling molecules, as well as interaction rules for determining quorum, competition, and horizontal gene transfer. Modeling platforms such as BacSim[8] and iDynoMiCS [104] provide ready-made solutions for spatial and mechanistic modeling. 
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